
Computability Theory: Constructive
Applications of the Lefthanded Local
Lemma and Characterizations of some

Classes of Cohesive Powers

Daniel Samir Mourad, Ph.D.

University of Connecticut, 2023

ABSTRACT

The Lovász local lemma (LLL) is a technique from combinatorics for proving ex-

istential results. There are many different versions of the LLL. One of them, the left-

handed local lemma, is particularly well suited for applications to two player games.

There are also constructive and computable versions of the LLL. The chief object of

this thesis is to prove an effective version of the lefthanded local lemma and to apply

it to effectivise constructions of non-repetitive sequences.

The second goal of this thesis is to categorize some classes of cohesive powers. We

completely describe both the isomorphism types of cohesive powers of equivalence

structures and injection structures, as well as clarify the relationship between these

cohesive powers and their original structures. We also describe the finite condensation

of cohesive powers of computable copies of the integers as a linear order by cohesive

sets whose complement are computably enumerable.

Finally, we investigate the possibility of decomposing problems in the Weihrauch

degrees into a product of first order part and second order part. We give a preliminary

result in this direction.

Computability Theory: Constructive
Applications of the Lefthanded Local
Lemma and Characterizations of some

Classes of Cohesive Powers

Daniel Samir Mourad

B.S., University of Maryland College Park, 2015

M.Ed., University of Maryland College Park, 2018

A Dissertation

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

at the

University of Connecticut

2023

Copyright by

Daniel Samir Mourad

2023

APPROVAL PAGE

Doctor of Philosophy Dissertation

Computability Theory: Constructive
Applications of the Lefthanded Local
Lemma and Characterizations of some

Classes of Cohesive Powers

Presented by

Daniel Samir Mourad, B.S., M.Ed.

Major Advisor
David Reed Solomon

Associate Advisor
Damir D. Dzhafarov

Associate Advisor
Iddo Ben-Ari

Associate Advisor
Thomas W. Roby

University of Connecticut

2023

ii

ACKNOWLEDGMENTS

First of all, I thank Reed Solomon, my advisor. Without his guidance and support,

it is safe to say that none of the work contained herein would have been possible. His

guidance has been crucial for suggesting research directions and signposting the path

forward. His perspective on writing have been incredibly important in developing

my mathematical voice. Reed is also sympathetic in his advising and has always

supported my academic interests. In short, Reed has been my ideal supervisor.

I also thank the faculty at UConn, who collectively have shared with me an im-

measurable wealth of knowledge and experience. In particular, I thank the members

of my thesis committee, Damir Dzhafarov, Iddo Ben-Ari, and Tom Roby, for their

mentorship and their helpful comments on this thesis. Their guidance has been

immensely beneficial and greatly enhanced my development as a scholar. I thank

Dzhafarov especially for his steady encouragement and mentorship. His teaching and

insights into both hard and soft aspects of the field have been invaluable to me. I

thank Ben-Ari especially for being an amazing role model and for spearheading an

exciting REU, empowering our students to conduct mathematical research. I thank

Roby especially for his stimulating lectures and aspirational teaching style, as well as

for the vital contribution of pointing out how to pronounce “Lovász”! In addition, I

thank Masha Gordina, Dave McArdle, Fabiana Cardetti, Katherine Hall, and Myron

Minn-Thu-Aye for being caring people and for generally having a positive impact on

the community in the UConn math department.

I thank the mathematicians I have discussed this work with and who have given

me the opportunity to present this work, including but not limited to Aidan Backus,

Heidi Benham, Anton Bernshteyn, Vasco Brattka, Wesley Calvert, Douglas Cen-

iii

iv

zer, Andrew DeLapo, Johanna Franklin, Elliot Glazer, Valentina Harizanov, Denis

Hirschfeldt, Noah Hughes, Corrie Ingall, Waseet Kazmi, Karen Lange, Tyler Markka-

nen, Joe Miller, David Nichols, Brian Pinsky, Isabella Scott, Phillip Scowcroft, Gi-

hanee Senadheera, Forte Shinko, Teerawat Thewmorakot, Robin Tucker-Drob, and

Java Villano. I thank Ileana Vasu for her exceptional perspectives and mentorship

on student centered instruction and inquiry based learning. I thank Monique Roy

and Rachel D’Antonio for all of their amazing work in keeping the math department

running. I also thank mentors who inspired my interest in mathematical research,

including Wojtek Czaja and Chris Laskowski. I also thank William Rose, whose

creative way of teaching logic sparked my passion for the subject early on.

I thank friends from home, including but not limited to Adam, Aiden, Ameen,

Arizona, Ashe, Ben, Bui, Channing, Daniel, Egan, Franky, Henok, Hillel, Mikhail,

Nguyen, and William for being trustworthy, lifelong companions. I also thank the

friends I met in Connecticut, including Adriana, Aniruddha, Antigoni, Anurag, De-

vika, Erin, Evelyn, Gianmarco, John, Jonathan, Matt, Mike, Noor, Paul, Surya,

Treena, Tulika, Utsav, Vinayak and many others for all of the encouragement and

fun times through the past five years.

I would be living a different life without the love and encouragement of my family.

I thank my parents, Teresa and Joe, for the opportunities and guidance they have

given me in life. I also thank my father for his indispensable mathematical guidance.

I thank my brother, Benjamin; my grandparents, Marlene and the late Samir; I also

thank my aunts and uncles: Nadia, Pierre “The Great and the Magnificent”, Adaleine,

Noha, Mona, Paul, Barry, Mark; and my cousins: Andrew, Matthew, Elizabeth,

Nicholas, Megan, Michael, and William, who have all supported me throughout the

years. Finally, I thank my partner, Stuti, for her endless supply of strength and love.

Contents

Ch. 1. Lefthanded Computable Lovász Local Lemma 1

1.1 Introduction . 1

1.2 Non-repetitive Sequences and the Local Lemma 3

1.3 The Constructive Local Lemma . 10

1.4 The Infinite Case . 21

1.5 Probabilistic Turing Machines . 24

1.6 Computable Local Lemma . 27

1.7 The Lefthanded Local Lemma . 31
1.7.1 The Computable Lefthanded Local Lemma 33

1.7.1.1 Logs and Moser Trees 35
1.7.1.2 The T -check . 39
1.7.1.3 Bounding the Probability that the T -check Passes . . 45

1.7.2 Computable Lefthanded Local Lemma 48
1.7.3 Applying the Computable Lefthanded Local Lemma 50

1.8 Binary Sequence Games . 53

1.9 Conclusion . 60

Ch. 2. Cohesive Powers 62

2.1 Introduction . 62

2.2 Some Classifications of Cohesive Powers 65
2.2.1 Equivalence Structures . 65
2.2.2 Injection Structures . 69

2.3 Finite Condensation of Cohesive Powers of ζ 71

Ch. 3. Compositional Second Order Part of a Problem in theWeihrauch
Degrees 76

v

3.1 Introduction and the First Order Part of a Problem 76

3.2 Compositional Second Order Part . 81

Bibliography 85

vi

Chapter 1

Lefthanded Computable Lovász
Local Lemma

1.1 Introduction

The Lovász local lemma (LLL) (Theorem 1.2.3) is a technique from combinatorics,

specifically from the probabilistic method. The LLL generalizes the following fact.

Note that, in this document, we write Ā for the complement (rather than the closure)

of a set A.

Proposition 1.1.1. Let A be a finite set of mutually independent events on some

probability space Ω. If Pr(Ā) > 0 for each A ∈ A, then there is positive probability

that the A ∈ A are simultaneously false, i.e.

Pr

(⋂
A∈A

Ā

)
> 0.

1

2

In particular, the set of outcomes
⋂

A∈A Ā making all of the A ∈ A false is non-empty.

Proof. Since the events in A are mutually independent, we have that

Pr

(⋂
A∈A

Ā

)
=
∏
A∈A

Pr(Ā).

The condition that Pr(Ā) > 0 for each A ∈ A give us

∏
A∈A

Pr(Ā) > 0.

Only empty sets have probability 0, so we have that
⋂

A∈A Ā is nonempty.

The LLL allows the possibility of dependence between events in A in exchange

for stricter requirements on their probabilities. The original formulation of the LLL

by Erdős and Lovász [16] has in common with Proposition 1.1.1 that both apply only

when A is finite. However, when used in combinatorics, the non-emptiness of
⋂

A∈A Ā

is the main point of interest. In this context, both Proposition 1.1.1 and the LLL can

be made to generalize to infinite sets A of events if Ω is compact and each A ∈ A is

open (so that Ā is closed).

However, in many cases of interest, this use of compactness is non-constructive.

In fact, the original proof of the LLL is non-constructive for finite objects as well.

In cases where Ω is finite, Erdős and Lovász’s proof of the LLL gives no hint as to

how to find an element of
⋂

A∈A Ā in a way faster than a brute force search. This

problem was of great interest in combinatorics and computer science [4, 2, 23, 9, 28].

In a seminal result, Moser and Tardos [24] give a simple and efficient constructive

version of the LLL (Theorem 1.3.1). The algorithm of Moser and Tardos has been

used as a foundation for many improvements, [18, 17, 25, 21, 1, 20], including a

3

computable version by Rumyantsev and Shen [27]. This effective version has been

used for multiple applications in computability theory and reverse math [19, 22, 8].

In this chapter, we modify the Moser–Tardos algorithm to be more broadly ap-

plicable, both in the finite case and in computability theory. We use the modified

algorithm to effectivise previously non-constructive theorems of Beck [5] (Theorem

1.2.1), and Alon, Spencer, and Erdős [3] (Theorem 1.2.2) on the existence of certain

types of non-repetitive sequences. We also effectivise Pegden’s [26] application of a

generalization of the LLL called the lefthanded Lovász local lemma (LLLL) to game

versions of Theorems 1.2.1 and 1.2.2. The LLLL allows for stronger interdependence

between the events in exchange for the existence of a partial order on the events

with certain properties. Theorem 1.7.13 makes a similar improvement to the results

of Moser and Tardos; and Rumyantsev and Shen, allowing stronger interdependence

in exhcange for the existence of a linear order (a computable linear order in the

computable version) with certain properties.

1.2 Non-repetitive Sequences and the Local Lemma

The Lovász local lemma (LLL) can be used to prove two closely related results about

the existence of non-repetitive sequences. One of these results is by Beck [5] and the

other is an exercise of Alon, Spencer, and Erdős [3]. They are stated below.

Theorem 1.2.1 (Beck [5]). Given arbitrary small ε > 0, there is some Nε and

an infinite {0, 1}-valued sequence a1, a2, a3, . . . such that any two identical intervals

ak, . . . , ak+n−1 and aℓ, . . . , aℓ+n−1 of length n > Nε have distance ℓ − k greater than

(2 − ε)n.

4

Theorem 1.2.2 (Alon, Spencer, and Erdős [3]). Given arbitrary small ε > 0, there is

some Nε and an infinite {0, 1}-valued sequence a1, a2, a3, ... such that any two adjacent

intervals of length n > Nε differ in at least (1
2
− ε)n many places. That is, for each

k and n > Nε, ak+i ̸= ak+n+i for at least (1
2
− ε)n many i with 0 ≤ i < n.

For i1 < i2, we say that intervals

[i1, j1) := ai1 , ai1+1, . . . , aij−1

and [i2, j2) are adjacent if i2 = j1. Their distance is i2− i1. We now state the version

of the Lovász local lemma that is used in the proof of Theorems 1.2.1 and 1.2.2. The

statement of the local lemma uses the language of graph theory. In the following,

we will work with both directed and undirected graphs. For a directed graph G and

vertex v ∈ G, let Γ(v) = {s ∈ G : v → s} be the out-neighbor set of v. For undirected

graph G with edge relation E and vertex v ∈ G, let Γ(v) = {s ∈ G : E(v, s)} be the

neighborhood (or neighbor set) of v. In both cases, let Γ+(v) = Γ(v) ∪ {v}. We will

work with both finite and countable graphs.

Theorem 1.2.3 (Lovász Local Lemma, General Form). Let A be a finite set of

events in some probability space. Suppose there exists a directed graph G on A and a

real-valued function z : A → (0, 1) such that, for each A ∈ A,

1. A is mutually independent from A \ Γ+(A) and

2.

Pr(A) ≤ z(A)
∏

B∈Γ(A)

(1 − z(B))

5

Then,

Pr(
⋂
A∈A

Ā) ≥
∏
A∈A

(1 − z(A)) > 0.

We call a graph with property (1) a dependency graph for A.

We now give the proofs of finite versions of Theorems 1.2.1 and 1.2.2. They imply

the full versions using a compactness argument which we will subsequently give.

Theorem 1.2.4 (Finite version of Theorem 1.2.1). For each ε > 0, there is some Nε

such that for every M there is a {0, 1}-valued sequence of length M such that any two

identical intervals of length n > Nε have distance greater than f(n) = (2 − ε)n.

Proof. Fix ε > 0 and N > 0. We will show that if N is large enough, then Nε = N

witnesses the theorem. Randomly select a {0, 1}-valued sequence a0, a1, a2, . . . , aM

by independently assigning each bit ai either 0 or 1, each with probability 1
2
. For

each k, l, n, let Ak,l,n be the event that the intervals

[k, k + n) = ak, ak+1, . . . , ak+n−1

and

[l, l + n) = al, al+1, . . . , al+n−1

are identical. Fix M ∈ N. Then, A is the set {Ak,l,n : l − k < f(n) and Nε < n <

M and 1 ≤ k < l ≤M − n}. Define a dependency graph G on A by putting an edge

between Ak,l,n and Ak′,l′,n′ if and only if the intersection of ([k, k+n−1]∪ [l, l+n−1])

and ([k′, k′ + n′ − 1] ∪ [l′, l′ + n′ − 1]) is nonempty. Since events of disjoint sets of the

ai are independent, G is a dependency graph for A. Clearly, Pr(Ak,l,n) = 2−n. Let

6

z(Ak,l,n) = 1
f(n)n3 . We need to show that, for each Ak0,l0,n0 ∈ A,

Pr(Ak0,l0,n0) = 2−n0 ≤ z(Ak0,l0,n0)
∏

Ak,l,n∈Γ(Ak0,l0,n0
)

(1 − z(Ak,l,n)).

For each k0, l0, n0 there are at most 2(n + n0) many intervals of length n that have

non-empty intersection with [k0, k0 + n0 − 1] ∪ [l0, l0 + n0 − 1]. For any given interval

I, we have that I = [k, k + n) or I = [l, l + n) for at most 2f(n) many pairs (k, l)

such that l − k ≤ f(n). Together with the previous observation, we conclude that

{(k, l) : Ak,l,n ∈ Γ(Ak0,l0,n0)} is of size at most 4(n + n0)f(n) for each n. This, along

with the definition of z(Ak,l,n) and the fact that 0 < 1 − z(Ak,l,n) < 1 for all k, l, n,

gives us that

z(Ak0,l0,n0)
∏

Ak,l,n∈Γ(Ak0,l0,n0
)

(1 − z(Ak,l,n)) ≥

1

f(n0)n3
0

∏
n≥N

(
1 − 1

f(n)n3

)4(n0+n)(f(n))

.

Since (1 − a
x
)x ≥ (1 − a) for 0 < a < 1 and x ≥ 1, the right hand side is greater than

or equal to

1

f(n0)n3
0

∏
n≥N

(
1 − 1

n3

)4n0
(

1 − 1

n2

)4

=
1

f(n0)n3
0

(∏
n≥N

(
1 − 1

n3

))4n0
(∏

n≥N

(
1 − 1

n2

))4

. (1.2.5)

For 0 < an < 1,
∏

n≥N(1−an) ≥ 1−
∑

n≥N an. So, Line 1.2.5 is greater than or equal

7

to

1

f(n0)n3
0

(
1 −

∑
n≥N

1

n3

)4n0
(

1 −
∑
n≥N

1

n2

)4

. (1.2.6)

For N ≥ 2, the two sums in Line 1.2.6 are bounded above by 1
N−1

, so Line 1.2.6

is greater than or equal to

(2 − ε)−n0

n3
0

(
1 − 1

N − 1

)4n0+4

.

If N is large enough, this is greater than or equal to 2−n0 , fulfilling the conditions of

the Local Lemma.

Theorem 1.2.7 (Finite version of Theorem 1.2.2). For each arbitrary small ε > 0

there is some Nε such that for eachM there is a {0, 1}-valued sequence a1, a2, a3, ..., aM

of length M such that any two adjacent intervals of length n > Nε differ in at least

(1
2
− ε)n many places. That is, for each k and n > Nε, ak+i ̸= ak+n+i for at least

(1
2
− ε)n many i with 0 ≤ i < n.

Proof. Fix ε > 0. As before, randomly select an infinite {0, 1}-valued sequence

a0, a1, a2, . . . by independently assigning each bit ai either 0 or 1, each with prob-

ability 1
2
. For each k, n ∈ N, let Ak,n be the event that blocks ak, ak+1, ..., ak+n−1 and

ak+n, ak+n+1, ..., ak+2n−1 share at least (1
2

+ ε)n many entries. The probability that

[k, k + n) shares exactly r entries with [k + n, k + 2n) is 2−n
(
n
r

)
, so

Pr(Ak,n) = 2−n

n∑
r=⌈(1

2
+ε)n⌉

(
n

r

)
.

8

Since the greatest of the
(
n
r

)
is
(

n
⌈(1

2
+ε)n⌉

)
,

Pr(Ai,b) ≤ n2−n

(
n

⌈(1
2

+ ε)n⌉

)
.

It is known that there is an α < 1 such that
(

N
⌈(1

2
+ε)N⌉

)
< (α2)N for large enough

N , so there is Nε such that for n > Nε,

Pr(Ai,n) < n2−n(α2)n = nαn,

which has limit 0 as n→ ∞.

Let zi,n = bn

n
for some b such that α1/3 < b < 1. Fix Ai0,n0 . We have that

Γ(Ai0,n0) = {Ai,n : i0 − n + 1 ≤ i ≤ i0 + 2n0 − 1}, so it suffices for the Lovász local

lemma to check that

bn

n

∞∏
n=Nε

i0+2n0−1∏
i=i0−n+1

(
1 − bn

n

)
≥ n0α

n0 .

for large enough Nε. The left-hand side is equal to

9

bn0

n0

∞∏
n=Nε

(
1 − bn

n

)2n0+2n−2

≥ bn0

n0

(
∞∏

n=Nε

(
1 − bn

n

)2n0
)(

∞∏
n=Nε

(
1 − bn

n

)2n
)

≥ bn0

n0

(
∞∏

n=Nε

(1 − bn)2n0

)(
∞∏

n=Nε

(1 − bn)2
)

≥ bn0

n0

∞∏
n=Nε

(1 − bn)2n0+2

≥ bn0

n0

(
1 −

∞∑
n=Nε

bn

)2n0+2

=
bn0

n0

(
1 − bNε

1 − b

)2n0+2

≥ bn0

n0

(b2n0+2)

=
b3n0+2

n0

≥ n0α
n0 ,

where the last three lines are for n0 large enough (adjust Nε accordingly).

The full proofs of Theorems 1.2.1 and 1.2.2 are obtained by the following compact-

ness argument. Fix ε > 0. Say that sequences and finite strings with the properties

promised by Theorems 1.2.1 and 1.2.2 for a given ε > 0 are “good”. By the local

lemma argument from the finite versions of the theorems, good strings exist of each

length M . Because any pair of intervals demonstrating that a given string σ is not

good are also present in any extension of σ, we see that initial segments of good

strings and sequences are also good. Therefore, the good strings form a binary tree

T under the initial segment partial order. By weak König’s lemma, T has a path X.

To see that X is good, suppose that it is not. Then there is a pair of blocks of X

10

witnessing that X is not good. These blocks are finite, so there is N such that X|N

contains them. Then, X|N is not good, contradicting that X|N ∈ T .

It is natural to ask for the computational complexity of such sequences. For strings

σ, it is uniformly computable to determine whether σ is good. Since the good σ form

a tree T , the paths through this tree form a Π0
1 class. As we saw above, the paths

through T are all good. Thus, by the respective basis theorems, there is a good

sequence of each of low, hyperimmune-free, and c.e.-degree.

However, this compactness argument does not show that there is a computable

good sequence. Indeed, many Π0
1 classes do not contain a computable element. In-

stead, this question is answered by a computable version of an extension of the local

lemma. Rumyantsev and Shen [27] first gave a computable version of Theorem 1.2.3.

Their proof, which is reproduced in Sections 1.5 and 1.6 closely follows the construc-

tive version of the local lemma given by Moser and Tardos [24], which is reproduced

in Section 1.6. For reasons we describe in Section 1.7, the move from finite strings

to infinite sequences in the application of Theorem 1.2.3 introduce complications in

applying the computable LLL of Rumyantsev and Shen [27]. Instead, we introduce an

extension of the computable LLL inspired by the lefthanded local lemma introduced

by Pegden [26].

1.3 The Constructive Local Lemma

The Moser–Tardos algorithm, also known as the resample algorithm, applies to a

special case of the local lemma known as the variable case. Let X = {x1, x2, ..., xt}

be a finite set of independent random variables with finite ranges and rational-valued

11

probability distributions. Let A be a finite set of events with each A ∈ A determined

by a finite set VBL(A) ⊂ X of random variables from X . We call X a variable context

for A. For example, each xi ∈ X might be a fair coin toss. The variable context

induces the following natural dependency graph for applying the Local Lemma. Let

G be the undirected graph defined on A where, for each A,B ∈ A, there is an edge

from A to B if and only if VBL(A) ∩ VBL(B) ̸= ∅ and A ̸= B. Let Γ(A) = {B ∈ B :

there is an edge between A and B}. Let Γ+(A) = Γ(A) ∪ {A}. If S ⊂ A \ Γ+(A),

then VBL(A) ∩
⋃

B∈S VBL(B) ̸= ∅, so A and A \ Γ+(A) are mutually independent,

satisfying Condition 1 of the local lemma (Theorem 1.2.3).

Moser and Tardos [24] showed that the resample algorithm efficiently constructs

witnesses to applications of the LLL in a variable context. The resample algorithm

proceeds as follows. Fix an enumeration A1, A2, A3, ..., Ar of A.

� Stage 0: Begin with a random sample of the values for each x ∈ X . In the coin

analogy, this would mean flipping each coin once.

� Stage n + 1: Check if the events in A are all false at the end of stage n. If

they are all false, terminate and return the current valuation of X . If any are

true, let k be least such that Ak is true at the end of stage n. Then, select

new independent random samples for all x ∈ VBL(Ak). In the coin analogy, we

would toss a new coin for each x ∈ VBL(A) and set the value of x to the result

of the coin toss.

We restate the theorem with reference to efficiency limited to what is useful in

the proof of Theorem 1.4.2.

Theorem 1.3.1 ([24]). Suppose the set of events A = {A1, A2, . . . , Ar} with de-

pendency graph G induced by variable context X satisfy the conditions of the Lo-

12

cal Lemma. Let τn be the first stage of the resample algorithm at which each of

A1, A2, ..., An is false. Then,

E(τn) <
∑
A∈A

z(A)

1 − z(A)

<∞

for each n.

We reproduce the proof of Theorem 1.3.1 below because the proof of Theo-

rem 1.7.13 uses many of the same techniques.

During the resample algorithm, we produce a log E1, E2, E3, ... of resampled events,

where Ei ∈ A is the event resampled at stage i. When analyzing the log, we are

interested in which entries of the log were relevant in the resampling of later entries

of the log. We track this information using Moser trees, also known as witness trees.

For a tree T with root r and vertex v ∈ T , we say that the depth of v is length of the

shortest path between v and r.

Definition 1.3.2 (Moser tree). Fix an initial segment E1, E2, ..., En of the log gen-

erated by a run of the resample algorithm. The Moser tree T associated with

E1, E2, ..., En is a finite tree with labels in A constructed as follows.

We construct T in stages, beginning at stage n and ending at stage 1. At each stage

i, we define Ti, setting T = T1. For a vertex in x ∈ Ti, let [x] ∈ A denote the label of x.

� Stage n: let Tn be the tree with one vertex labeled En.

� Stage k − 1: check whether there is some x ∈ Tk such that Ek−1 ∈ Γ+([x]). If

there is not, let Tk−1 = Tk. If there is, pick such an x ∈ Tk of maximal depth.

13

If there are multiple vertices of maximal depth, one may be chosen arbitrarily.

Let Tk−1 be Tk with a new vertex labeled Ek−1 as a child of x.

If T is the Moser tree associated with some initial segment of the log generated by a

run of the resample algorithm, then we say that this run of the resample algorithm

produces T .

For x ∈ T , let d(x) be the depth of x in T . Let q(x) be the stage of the Moser–

Tardos algorithm at which x was added to T . To be precise, q(x) is the unique stage

i such that x ∈ Ti but x ̸∈ Ti+1.

We give some properties of Moser trees:

Proposition 1.3.3. Fix a run of the resample algorithm. Let E1, E2, ..., En be an

initial segment of the log. Then, the Moser tree T associated with E1, E2, ..., En has

the following properties.

1. For each x, y ∈ T , if [x] ∈ Γ+([y]) and x ̸= y, then d(x) ̸= d(y). Furthermore,

under the same conditions, we also have that d(x) > d(y) if and only if q(x) <

q(y).

2. T is not the Moser tree associated with E1, E2, ..., Em for any m ̸= n.

Proof. To see (1), suppose that x ̸= y and [x] ∈ Γ+([y]). By construction, only

one vertex can be added to the tree at each stage, so q(x) ̸= q(y). Because the

neighborhood relation is symmetric, [y] ∈ Γ+([x]). Thus, without loss of generality,

we can assume that q(x) < q(y). Then, when x is added to Tq(x), y is already in Tq(x)+1.

Since x is added as a child of a maximal depth node z ∈ Tq(x)+1 with [x] ∈ Γ+([z]),

we must have that d(z) ≥ d(y). So d(x) ≥ d(y) + 1, and in particular d(x) > d(y),

14

proving the first part of the statement. By the symmetrical argument, q(x) > q(y)

implies that d(x) < d(y), proving the second part of the statement.

To see (2), let r ∈ T be the root vertex. If T is the Moser tree associated with

E1, E2, ..., Em then Em = En = [r]. We also have that [r] ∈ Γ+([r]), so the number of

nodes labeled [r] is equal to the number of instances of [r] in the initial segment(s)

that T is associated with. Thus, E1, E2, . . . , Em has the same number of entries with

value [r] as E1, E2, . . . En. This can only happen if n = m.

Note that part (1) of Proposition 1.3.3 also implies that each event appears at

each depth of T at most once.

Next we bound the probability that some initial segment of the log is associated

with any given T . This is done via coupling with the following random process.

Definition 1.3.4 (T -check). Fix a finite labeled tree T with labels from A. Fix an

ordering, v1, v2, ..., vk, of the vertices of T with non-increasing depth. The T-check

is the random process that proceeds as follows.

At stage i for 1 ≤ i ≤ k, take a random, independent valuation of the variables in

VBL([vi]) according to their distributions and check if this valuation makes [vi] true.

The T -check passes if, for all j with 1 ≤ j ≤ k, [vj] is found true at stage j.

Because the valuations at each stage are independent, the probability that the

T -check passes is exactly Πv∈T Pr([v]).

For our purposes, the ordering of the vertices of equal depth does not matter.

However, in the T -check used for the proof of Theorem 1.7.13, the ordering of the

vertices will be completely determined by the labels of T .

Fixing the result of every resampling of the variables in X prior to running the

algorithm facilitates the coupling argument by allowing us to record the number of

15

times each variable has been resampled at each stage of both the T -check and the

resample algorithm. For the computable local lemma, we will need X to be countable,

so we allow it in the following definition.

Definition 1.3.5 (Random Source). Fix a finite (or countable) set of independent

random variables X = x1, x2, x3, A random source for X is a function S(x, y)

such that for all xi and j ∈ ω, S(i, j) ∈ range(xi). We typically denote S(i, j) by xji .

We think of x0i as the initially sampled value of xi and, for j > 0, xji as the value of

xi after the j’th resampling.

From now on, the statement about expectation in the local lemma (Theorem 1.3.1)

will be interpreted in the probability space of all random sources with probability

measure generated by taking each xji as an independent random sample of xi.

In a random source, the entry xji represents the result of the j’th resampling of xi.

For each xi ∈ X and stage n, we record Vn(i) to be the number of times the resample

algorithm has resampled xi at the beginning of stage n. Fixing a random source for

X , the following deterministic restatement of the resample algorithm provides a more

precise definition of Vn(i).

Definition 1.3.6 (Deterministic Resample Algorithm). The deterministic resample

algorithm proceeds in stages, as follows.

� Stage 0: Let V0(i) = 0 for all xi ∈ X .

� Stage n+1: Check if the events of A are all false under the valuation xi = x
Vn(i)
i .

If they are all false, terminate and return the valuation x
Vn(i)
i for each xi. If

any are true, let k be least such that Ak is true under the valuation xi = x
Vn(i)
i .

16

Then, define Vn+1 by

Vn+1(i) =

Vn(i) if xi ̸∈ VBL(Ak)

Vn(i) + 1 if xi ∈ VBL(Ak).

We also record V̂n(i) to be the number of times the T -check has resampled xi at

the beginning of stage n. As above, a more precise definition of V̂n(i) can be found

by stating the T -check deterministically using a random source, as follows.

Definition 1.3.7 (Deterministic T -check). Fix a rooted labeled tree T with labels

from A and a random source {xji} for X . The T-check is the random process that

proceeds as follows.

� Fix an ordering, v1, v2, ..., vk, of the vertices of T with non-increasing depth.

� Stage 0: Let V̂0(i) = 0 for all xi ∈ X .

� Stage n+1: Check if [vn+1] is true under the valuation xi = x
V̂n(i)
i . Then, define

V̂n+1 by

V̂n+1(i) =

V̂n(i) if xi ̸∈ VBL([vn+1])

V̂n(i) + 1 if xi ∈ VBL([vn+1]).

The T -check passes if, for all j with 1 ≤ j ≤ k, vj is found true at stage j.

Suppose that a Moser tree is generated by the resample algorithm. The next

proposition shows that the resample algorithm and the T -check have resampled the

relevant variables an equal number of times when checking each vertex of T .

17

Proposition 1.3.8. Suppose that the Moser tree T is associated with an initial seg-

ment E1, E2, ..., Em of the log of the resample algorithm run on a random source S.

Let v1, v2, ..., vr be the ordering of the vertices of T used by the T -check. For each

n, let Vn and V̂n be the records of resampling used by the resample algorithm and

T -check, respectively, at stage n. Then, for each stage n ≤ m and xj ∈ VBL([vn]),

V̂n(j) = Vq(vn)(j).

Proof. Fix stage n ≤ m and xj ∈ VBL([vn]). Let P = {k < q(vn) : xj ∈ VBL(Ek)}.

Let P T = {vk ∈ T : xj ∈ VBL([vk]) and k < n}. By definition of the resample

algorithm and T -check, respectively, Vq(vn)(j) = |P | and V̂n(j) = |P T |. It remains to

show that |P | = |P T |. We claim that q is a bijection from P T to P .

To see this, first note that q is injective because at most one vertex is added at

each stage of constructing the Moser tree associated with E1, . . . , Em. It remains to

show that q(P T) ⊂ P and that P ⊂ q(P T).

Fix k ∈ q(P T) witnessed by q(vs) = k for some vs ∈ P T . Then, Ek = [vs] and

xj ∈ VBL([vs]), so xj ∈ VBL(Ek). We now show that k < q(vn). k ̸= q(vn) because q

is injective. The fact that s < n tells us that the T -check considers vs before vn and

therefore that d(vs) ≥ d(vn) by definition of the T -check. The events [vs] and [vn]

are neighbors, so by Proposition 1.3.3, their respective nodes cannot have the same

depths on T , so d(vs) > d(vn). By Proposition 1.3.3, q(vn) > q(vs) = k, giving the

final property required to conclude that k ∈ P . Thus, q(P T) ⊂ P .

Fix k ∈ P . We have k < q(vn) and Ek ∈ Γ+([vn]), so at stage k of constructing

the Moser tree a node vs ∈ T is added with q(vs) = k. Thus, k ∈ q(T). Since

k = q(vs) < q(vn) it follows by Proposition 1.3.3 that d(vs) > d(vn). Then, by

18

definition of the T check, s < n. Since xj ∈ Ek = [vs], we have that vs = q−1(k) ∈ P T .

Thus, P ⊂ q(P T).

This shows that q is a bijection from P T to P , so |P T | = |P | and hence V̂i(j) =

Vq(vi)(j).

Now we can compare the T -check to the probability of producing T .

Proposition 1.3.9. Fix a Moser tree T . The probability that the resample algorithm

produces T is less than or equal to the probability that the T -check passes. Thus,

Pr(the resample algorithm produces T) ≤
∏
v∈T

Pr([v]).

Proof. It suffices to show that, for any random source, the T -check passes if the re-

sample algorithm produces T . Fix random source {xji} and suppose that the resample

algorithm produces T when run on this random source. Fix an ordering, v1, v2, ..., vk,

of the vertices of T with non-increasing depth. By Proposition 1.3.8, we have that

V̂i(j) = Vq(vi)(j) for each vi ∈ T and j ∈ VBL([vi]). Thus, the T -check and resample

algorithm always use the same variables to check if [vi] is true for each i.

Each stage of the T -check uses an independent set of variables, so the probability

that the T -check passes is
∏

v∈T Pr([v]). For A ∈ A let TA be the set of all possible

Moser trees with root node labeled A. We use a Galton–Watson type process to

bound
∑

T∈TA

∏
v∈T Pr([v]). The process constructs a labeled tree, beginning with a

single root vertex r labeled [r] = A at stage 0 with d(r) = 0. At stage s + 1, the

Galton–Watson process checks if there are any vertices of depth equal to s. If there

are, then for each pair (v, E) of vertex v with d(v) = s and E ∈ Γ+[v], it randomly

chooses one of two things: with probability z(E), it adds a new vertex to the tree as

19

a child of v and labels this new vertex E. If it does not do this, then it does nothing

for the pair (v, E). If there are no v ∈ G of depth s, then the process ends.

Each member of TA can be produced by the Galton–Watson process but not all

trees produced by the Galton–Watson process are members of TA. For example, the

Galton–Watson process can produce trees that violate part (1) of Proposition 1.3.3.

Claim 1.3.10. Let T be a Moser tree with root vertex labeled A. The probability

pT that the above Galton–Watson process ends and produces exactly T is given by

pT =
1 − z(A)

z(A)

∏
v∈T

z([v])
∏

B∈Γ[v]

(1 − z(B))

 .

Before proving the claim, note that this implies that

pT ≥ 1 − z(A)

z(A)

∏
v∈T

Pr([v])

by the local lemma condition. Then, by Proposition 1.3.9,

Pr(the resample algorithm produces T) ≤
∏
v∈T

Pr([v]) ≤ z(A)

1 − z(A)
pT . (1.3.11)

Summing over all trees with root node labeled A yields

∑
T∈TA

Pr(the resample algorithm produces T) ≤ z(A)

1 − z(A)

∑
T∈TA

pT .

The Galton–Watson process can only produce at most one tree (and not always a

20

Moser tree), so
∑

T∈TA pT ≤ 1. Thus,

∑
T∈TA

Pr(the resample algorithm produces T) ≤ z(A)

1 − z(A)
.

Summing over all A ∈ A yields

∑
T

Pr(the resample algorithm produces T) ≤
∑
A∈A

z(A)

1 − z(A)
.

Let γ be the number of steps in the resample algorithm. Since each step of the

resample algorithm produces exactly one tree,

E(γ) = E(# of Moser trees produced by the resample algorithm)

=
∑
T

E
(
1{the resample algorithm produces T}

)
=
∑
T

Pr(the resample algorithm produces T)

≤
∑
A∈A

z(A)

1 − z(A)
(1.3.12)

<∞,

giving the statement of Theorem 1.3.1. It remains to show Claim 1.3.10

Proof of Claim 1.3.10. For each vertex v ∈ T , let Wv ⊂ Γ+([v]) be the set of inclusive

neighbors of [v] that do not occur as a label of some child of v. pT has a factor of

z([v])
∏

B∈Wv

(1 − z(B))

for each v ∈ T except for the root r, which is guaranteed to appear and hence

21

does not contribute the leading factor of z([r]). Therefore, the probability that the

Galton–Watson process produces exactly T is given by

pT =

[∏
B∈Wr

(1 − z(B))

][∏
v∈T,v ̸=r

(
z([v])

∏
B∈Wv

(1 − z(B))

)]

=
1

z(A)

∏
v∈T

(
z([v])

∏
B∈Wv

(1 − z(B))

)
.

Multiplying and dividing by
∏

v∈T,v ̸=r(1 − z([v])) yields

pT =
1 − z(A)

z(A)

∏
v∈T

(
z([v])

1 − z([v])

∏
B∈Wv

(1 − z(B))
∏

u child of v

(1 − z([u]))

)

=
1 − z(A)

z(A)

∏
v∈T

 z([v])

1 − z([v])

∏
E∈Γ+([v])

(1 − z(B))

 .

Absorbing 1
1−z([v])

into the innermost product allows us to replace Γ+([v]) with Γ([v]),

so

pT =
1 − z(A)

z(A)

∏
v∈T

z([v])
∏

B∈Γ([v])

(1 − z(B))

 ,

as claimed.

This completes the proof of Theorem 1.3.1.

1.4 The Infinite Case

So far, we have only considered finite applications of the Local Lemma. Before bring-

ing the Local Lemma into the realm of computability, we discuss its infinitary state-

22

ment. We work over the same variable context as in Theorem 1.3.1 with the modifica-

tions that X = {xi : i ∈ ω} is an infinite set of independent random variables with fi-

nite range and A is an infinite set of events with each A ∈ A completely determined by

a finite set VBL(A). As before, let Γ(A) = {B : VBL(A)∩VBL(B) ̸= ∅ and A ̸= B}.

Theorem 1.4.1 (Lovász Local Lemma, Infinite Version). Let X and A be as above.

If there exists a real-valued function z : A → (0, 1) such that, for each A ∈ A,

1. A is mutually independent from A \ Γ+(A) and

2.

Pr(A) ≤ z(A)
∏

B∈Γ(A)

(1 − z(B)),

then there exists an assignment of the variables in X that avoids all the events A ∈ A.

Proof. This follows from the same argument as the infinite versions of Theorems 1.2.1

and 1.2.2, although we must make use of assumptions that were previously implicit.

For each s ∈ ω, let As be the set of A ∈ A such that VBL(A) ⊂ {x1, x2, ..., xs}. The

range of each xi is finite, so there are only finitely many unique events in As. Thus,

by the finite version of the Local Lemma, there is an assignment of the variables

x1, x2, ..., xs avoiding all A ∈ As. Furthermore, if some assignment σ of the variables

makes all A ∈ As false, then σ|n makes all A ∈ An false. Thus, the set of assignments

of finite initial segments x1, x2, ..., xs of X that avoid all A ∈ As forms an infinite tree

T . T is finitely branching because each xi has finite range. Therefore, T has a path X

by Königs lemma. To see that X makes each A ∈ A false, note that because VBL(A)

is finite there is some stage s such that A ∈ As, so X|s makes A false. Therefore, X

also makes A false.

23

The infinite resample algorithm has the same definition as in the finite case.

Rumyantsev and Shen’s analysis of the infinite resample algorithm yields a com-

putable version of the Local Lemma. The argument requires in an essential way that

for each x ∈ X , the set {A ∈ A : x ∈ VBL(A)} is finite. We also need the following

computability assumptions:

1. The events A = A1, A2, A3, ... are computably presented. That is, VBL(Ai) and

the finite set of assignments of the variables in VBL(Ai) that make Ai true are

both uniformly computable with respect to i.

2. Each xi has a rational-valued probability distribution that is uniformly com-

putable with respect to i.

3. The code for the finite set of indices {j : xi ∈ VBL(Aj)} is uniformly computable

given i.

Theorem 1.4.2 (Lovász Local Lemma, Computable Version [27]). Let X and A be as

above. If there exists a rational constant α ∈ (0, 1) and a computable rational-valued

function z : A → (0, 1) such that, for each A ∈ A,

1. A is mutually independent from A \ Γ+(A), and

2.

Pr(A) ≤ αz(A)
∏

B∈Γ(A)

(1 − z(B)),

then there exists a computable assignment of the variables in X that avoids all the

events A ∈ A.

Note the extra factor of α on the right hand side of the inequality. It is used

24

to control the probability of long chains of resampling late events that cause earlier

events to go from false to true.

1.5 Probabilistic Turing Machines

To model the resample algorithm, Rumyantsev and Shen use a custom model of

computation that allows the output tape to be rewritable — that is, the machine

can change the contents of each output cell arbitrarily often. We think of these

machines as random variables from Cantor space equipped with the Cantor measure

to partial functions from ω to {0, 1}. In order to simulate this using standard models

of computation, we treat inputs to a Turing functional as ordered pairs (i, s), where

Φ(i, s) represents the contents of the i’th cell at stage s.

Definition 1.5.1 (Rewritable Probabilistic Turing Machine). A rewritable prob-

abilistic Turing machine is a random variable Φ : 2ω → {partial functions from ω

to {0, 1}} equipped with a total computable Turing functional Φ with the property

that

Φ(B)(i) =

lims→∞ ΦB(i, s) if the limit exists

↑ otherwise

for all i.

We will be interested in the output distribution of rewritable probabilistic Turing

machines Φ. Suppose that Pr(Φ(i) ↓ for all i) = 1. Then, the probability distribu-

tion Q on the output of Φ is determined by its values Q(Σx) = µ({B : Φ(B) ∈ Σx})

where Σx is the cone of infinite extensions of the binary string x. We say that Q

is computable if Q(Σx) is uniformly computable with respect to x. The following

25

proposition states that we can compute Q if there is a computable function N(i, δ)

such that the probability that the i’th entry changes after step s = N(i, δ) is less

than δ.

Proposition 1.5.2. Let Φ be a rewritable probabilistic Turing machine with Tur-

ing functional Φ. Suppose that there is a computable function N(i, δ) such that the

probability that the i’th entry changes after step N(i, δ) is less than δ. Then,

1. For each i, Pr(Φ(i) ↓) = 1.

2. The output distribution on Φ(i) is uniformly computable w.r.t. i.

We call rewritable probabilistic Turing machines satisfying the conclusions of

Proposition 1.5.2 layerwise computable mappings.

Proof. It is sufficient to show that, given rational δ > 0 and x ∈ 2<ω, we can approx-

imate Q(Σx) with error at most δ. Let |x| = length(x). Let

k = max({N(i, δ/|x|) : i < |x|}).

Because Φ is a total Turing functional, there is computable function m : ω → ω

such that Φσ(i, n)↓ for every n, i < n and σ ∈ 2m(n). Therefore, for all n, i ≤ n

and B ∈ 2ω, ΦB|m(n)(i, n)↓. For the purpose of properly notating probabilities, let I :

2ω → 2ω be the identity random variable; that is, I(B) = B. Then, we approximate

Q(Σx) by

Q̂(Σx) =
#{y ∈ 2m(k) : Φy(i, k) ↓= x(i) for all i < |x|}

2m(k)

= Pr(ΦI|m(k)(i, k) = x(i) for all i < |x|).

26

Then,

|Q(Σx) − Q̂(Σx)| ≤ Pr
(
(∃i < |x|)(∃s > k)[ΦI(i, s) ̸= ΦI(i, k)]

)
=

∑
y∈2m(k)

Pr
(
(∃i < |x|)(∃s > k)[ΦI(i, s) ̸= Φy(i, k)]|y ≺ I

)
Pr(y ≺ I)

≤
∑

y∈2m(k)

∑
i<|x|

Pr
(
(∃s > k)[ΦI(i, s) ̸= Φy(i, k)]|y ≺ I

)
Pr(y ≺ I)

≤
∑
i<|x|

δ

|x|

 ∑
y∈2m(k)

Pr(y ≺ I)

= δ

so we have successfully approximated Q(Σx) with error less than or equal to δ.

Now that we have a computable output distribution for a layerwise computable

mapping, we can find a computable element of its output.

Proposition 1.5.3. Let Φ be a layerwise computable mapping and let F ⊂ 2ω be a

closed set such that Pr(Φ ∈ F) = 1. Then, F has a computable element.

Proof. Let Q(Σx) = Pr(x ≺ Φ). Part 1 of Proposition 1.5.2 implies that Q(Σx) =

Q(Σx⌢0)+Q(Σx⌢1), so if Q(Σx) > 0 then either Q(Σx⌢0) > 0 or Q(Σx⌢1) > 0. Thus,

if Q(Σx) > 0, we can computably define a computable A ∈ 2ω such that x ≺ A and

for each τ ≺ A, Q(Στ > 0). If A ̸∈ F , then, since F is closed, there is some τ ≺ A

such that τ has no extensions in F . But Q(Στ) > 0, contradicting that X ∈ F with

probability 1. Thus, A ∈ F .

We can also define rewritable probabilistic Turing machines which compute from a

fixed oracle. This works by modifying Definition 1.5.1 to allow the Turing functional

27

Φ to have an oracle. Fix rewritable probabilistic Turing machine Φ. For C ∈ 2ω, we

write ΦC to denote the layerwise rewritable probabilistic Turing machine

ΦC(B)(i) =

lims→∞ ΦB⊕C(i, s) if the limit exists

↑ otherwise

.

Note that the output of ΦC might be completely unrelated to the output of Φ.

Proposition 1.5.4. Let Φ be a rewritable probabilistic Turing machine with Turing

functional Φ. Suppose that there is a Turning functional N(i, δ) such that for each

C ∈ 2ω we have that the probability that the i’th entry of ΦC(B) changes after step

NC(i, δ) is less than δ. Furthermore, suppose that, for each C, there is a closed

FC ⊂ 2ω such that ΦC(B) ∈ FC almost surely. Then there is a Turing functional Ψ

such that for each C, ΨC ∈ FC.

Proof. Use NC and apply Proposition 1.5.2 to compute a Turing functional Θ such

that ΘC(x, ·) = QC(Σx) as reals, where QC(Σx) is Q(Σx) for ΦC . Then, compute ΨC

by applying the construction in the proof of Proposition 1.5.3 using ΘC .

However, there is no guarantee that
⋂

C FC ̸= ∅. In the case of non-repetitive

binary sequence games, Proposition 1.8.8 guarantees that
⋂

C FC = ∅ when C ranges

over player 2 strategies.

1.6 Computable Local Lemma

It remains to show that the resample algorithm produces a layerwise computable

mapping as in Theorem 1.5.2. We can use elements of 2ω as a random source by

28

coding the finite range of each x ∈ X and using a pairing function to determine

values for each xji . Let ΦB(i, s) be the value of xi at stage s of the resample algorithm

with random source B. Let Φ(B)(i) = lims→∞ ΦB(i, s). We need to show that the

rewritable probabilistic Turing machine Φ associated with Φ is a layerwise computable

mapping. We also need to show that none of the bad events A ∈ A are true under the

valuation of the x ∈ X given by Φ(B) for almost every B ∈ 2ω. Then, we can apply

Proposition 1.5.3 to the set F of valuations of the x ∈ X that make each A ∈ A false

to show that F has a computable element.

To show that Φ is layerwise computable, we need to compute N(i, δ) such that xi

changes with probability less than δ after stage N(i, δ). Because each xi is involved

in finitely many events and the set of events is uniformly computable, it is sufficient

to find an M(i, δ) such that the probability that Ai is resampled after stage M(i, δ)

is less than δ. Fix i and δ. Let k be such that A1, A2, ..., Ak contains all events at

distance m or less from Ai in the dependency graph for m such that

αm z(Ai)

1 − z(Ai)
≤ δ/2.

Let Tk be the random variable whose value is the first stage such that each of

A1, A2, ..., Ak are false. The event “Ai is resampled after time t” is covered by the

events t < Tk and t ≥ Tk. We show that the probability of both of these events

effectively converges to 0.

Because the resample algorithm resamples events with lower indices first, no Aj

with j > k can be resampled before Tk. Thus, we can use the bound in Line 1.3.12

29

to get

E(Tk) <
∑
i<k

z(Ai)

1 − z(Ai)
.

By Markov’s inequality,

Pr(Tk ≥ t) ≤ E(Tk)

t
,

which we can solve to find s large enough so that

Pr(Tk ≥ s) < δ/2. (1.6.1)

Finding such s is uniformly computable from i and δ. We set M(i, δ) = s.

Since Pr(Tk ≥ s) < δ/2, we also have that

Pr(Ai is resampled after stage s and Tk ≥ s) < δ/2.

Now we bound the probability that Ai is resampled at some stage t1 > s and

Tk < s. Consider the log of resampling E1, E2, Suppose that Ai is resampled

at some stage t1 > s > Tk. We claim that there must be a sequence of stages

Tk < tm < tm−1 · · · < t3 < t2 < s < t1 such that for each 1 < j ≤ m, we have that

Etj−1
is false before resampling Etj at stage tj and true after resampling Etj at stage

tj.

We prove the claim by induction on the final index n ≤ m of the sequence. For

n = 1, the sequence t1 satisfies the requirements. Suppose there is a such a sequence

of stages Tk < tn−1 < tn−2 < · · · < t1. For resampling Etj+1
to change the truth value

of Etj , it must be the case that Var(Etj+1
)∩Var(Etj) ̸= ∅ and hence Etj+1

∈ Γ+(Etj).

30

It follows that Etn−1 is of distance at most n ≤ m from Et1 = Ai. Because all events

of distance d ≤ m from Ai are false at Tk, we have that Etn−1 is false at stage Tk.

So, there must be some t′ such that Tk < t′ < tn−1 such that Etn−1 goes from being

false before resampling Et′ at stage t′ to being true after the resampling Et′ at stage

t′. This exactly the condition required for tn, so we let tn = t′. This completes the

proof of the claim.

Recall that the LLL condition for the computable version (Theorem 1.4.2 requires

an additional factor of α ∈ (0, 1). Then, Inequality 1.3.11 becomes

Pr(the resample algorithm produces T) ≤ α|T | z(Ai)

1 − z(Ai)
pT .

Consider the Moser tree S associated with E1, . . . , Et1 = Ai. The subsequence

Etm , Etm−1 , . . . , Et1 is a chain of neighbors, so S has at least m vertices and root node

labeled Ai. Let B be the event that the resample algorithm produces a tree of size m

with root node labeled Ai. It follows that

Pr(Ai is resampled at stage t0 > s and Tk < t1) ≤ Pr(B)

≤
∑

T∈TAi
,|T |≥m

α|T | z(Ai)

1 − z(Ai)
pT

≤ αm z(Ai)

1 − z(Ai)

∑
T∈TAi

pT

≤ αm z(Ai)

1 − z(Ai)

≤ δ/2.

Thus, we have that Pr(Ai is resampled after stage s) ≤ δ. Therefore, the resample

31

algorithm is a layer-wise computable mapping. To apply Proposition 1.5.3, we just

need to check that the output sequence

lim
t→∞

x
Vt(1)
1 lim

t→∞
x
Vt(2)
2 lim

t→∞
x
Vt(3)
3 . . .

makes each A ∈ A false almost surely, and that making each A ∈ A false is closed.

To see that latter, note that each A being true is open, so the intersection of them

all being false is closed. To see the former, fix Ai ∈ A and suppose that A is true in

the output sequence. Then, the resample algorithm resamples some Aj with j ≤ i

infinitely many times. However, this happens with probability 0 as we have just

shown that as t goes to infinity, the probability that Aj gets resampled after time t

goes to 0. Since A is countable, the union probability that any A ∈ A is true in the

output sequence is also 0.

Thus, the resample algorithm is a layerwise computable mapping which almost

surely converges in the closed set F of all valuations of the xi ∈ X that make each

A ∈ A false. By Proposition 1.5.3, F has a computable element. This completes the

proof of Theorem 1.4.2.

1.7 The Lefthanded Local Lemma

We would like to prove computable versions of Theorems 1.2.1 and 1.2.2. However,

although we have a computable version of the local lemma, we cannot apply it to these

problems due to the additional constraint that for each xi, the set {A : xi ∈ VBL(A)}

is finite. To see this, for Theorem 1.2.1, fix an ε and Nε satisfying the conditions. For

32

fixed xi, consider

S = {Ak,l,n : xi ∈ VBL(Ak,l,n) ∧ n > Nε ∧ l − k < (2 − ε)n}.

Fix Ak0,l0,n0 ∈ S such that xi ∈ [k0, k0 + n0 − 1]. Then, for each n > n0, Ak0,l0,n ∈ S

as well, so S is infinite. A first step to solving this problem is restricting A to the

Ak,l,n such that (l − k) = ⌊(2 − ε)n⌋.

This is still a sufficient set of events because if Ak,l,n is false, then the interval

[k, k+n) does not have the same entries as [l, l+n). This implies that for any m > n,

[k, k+m) also does not have the same entries as [l, l+m). Therefore, if Ak,l,n is false

then Ak,l,m is false for each m > n.

This seems helpful because for fixed l and k, there is only one n to worry about.

However, we still find infinitely many Ak0,l,n ∈ A by increasing both n and l simulta-

neously.

A similar problem occurs for the Ak,n from the proof of Theorem 1.2.2. If xi ∈

[k0, k0 + n0 − 1] then xi ∈ [k0, k0 + n− 1] for each n > n0.

While there may be some clever way of further reducing the event space, we

will solve this issue by resampling fewer variables for each event. In the proof of

Theorem 1.4.2, the assumption that each xi is part of finitely many events is required

so that each xi eventually stops getting resampled. In Theorems 1.2.2 and 1.2.1, note

that resampling just the latter half of the variables of Ak,l,n is enough to “reset“ the

probability of Ak,l,n, and likewise for Ak,n. We can take advantage of this during the

resample algorithm.

In the case of Theorem 1.2.1, when Ak,l,n needs to be resampled, instead of resam-

pling all of VBL(Ak,l,n) we only resample a subset RSP(Ak,l,n) := [l, l + n). We call

33

RSP(Ak,l,n) the resample variables of Ak,l,n. The remaining variables, STC(Ak,l,n) :=

VBL(Ak,l,n) \ RSP(Ak,l,n) remain the same. We call STC(Ak,l,n) the static variables

of Ak,l,n. Note the probability of Ak,l,n after resampling VBL(Ak,l,n) is equal to the

probability of Ak,l,n after resampling only RSP(Ak,l,n). Given any valuation µ of the

variables in STC(Ak,l,n), let Eµ be the event that x = µ(x) for each x ∈ STC(Ak,l,n).

We have

Pr(Ak,l,n is true after resampling the variables in RSP(Ak,l,n)|Eµ) = 2−n,

which is equal to Pr(Ak,l,n).

However, reducing the number of variables we resample makes it more difficult

to couple the Moser–Tardos algorithm with a T -check. To ensure that the T -check

and the Moser–Tardos algorithm resample events in the same order, we will need to

assign priorities to the events in A. In the case of Theorem 1.2.1, we will prioritize

events by the right endpoints of their resample sets.

1.7.1 The Computable Lefthanded Local Lemma

Let X = {x1, x2, x3, ...} be a set of independent random variables and let A be

a countable set of events, each A ∈ A with a finite set VBL(A) ⊂ X such that

A completely depends on the variables in VBL(A). For each A ∈ A fix a subset

RSP(A) ⊂ VBL(A) that we will resample when A is true during the resample al-

gorithm. Designate STC(A) := VBL(A) \ RSP(A) as the (finite) list of variables

possibly dependent with A that we do not resample. We also require that RSP(A) is

an interval [a, b) = {xa, xa+1, . . . , xb−1} and that max(STC(A)) < min(RSP(A)) for

34

all A ∈ A. We define the neighborhood relation Γ(A) by B ∈ Γ(A) if and only if

RSP(A)∩RSP(B) ̸= ∅ and A ̸= B. Note that it is no longer the case that B ̸∈ Γ(A)

implies that A and B are independent. As before, let Γ+(A) = Γ(A) ∪ {A}.

Fix a total linear order ≻ of order type ω on A such that

[max(RSP(A)) > max(RSP(B))] =⇒ [A ≻ B].

Note that such an order always exists because we will assume that for each x ∈ X ,

the set of events {A ∈ A : x ∈ RSP(A)} which can resample x is finite.

Definition 1.7.1. If A ≺ B and A ̸∈ Γ(B) then we write A≪ B.

The relation A ≪ B indicates that A ≺ B and that A and B have some amount

of separation between their resample sets. We now develop some basic properties of

≺ and ≪.

It follows from definition chasing that for all events A,B ∈ A, we have that A≪ B

if and only if RSP(A) is completely to the left of RSP(B). The latter half of this

biconditional implies that RSP(B)∩VBL(A) = ∅. This gives us that A≪ B implies

that resampling B has no effect on A. It also follows from the biconditional that ≪

is transitive.

Definition 1.7.2. The lefthanded resample algorithm follows the same steps as the

resample algorithm, modified in two ways.

� The resample algorithm chooses the ≻-least true event to resample instead of

going by an arbitrary indexing.

� When the resample algorithm resamples A ∈ A, it resamples the variables in

RSPA ⊂ VBLA instead of all of VBLA.

35

In our analysis of when the lefthanded resample algorithm converges, we need to

keep track of the probability that each A ∈ A becomes false after resampling the

variables RSP(A). However, this depends on the current valuation of STC(A). For µ

an evaluation of some set of variables, let Eµ be the event that values of the variables

match their valuation by µ. For A ∈ A, let EA be the set of valuations of the variables

in STC(A).

The following theorem gives conditions for which this modified resample algorithm

converges.

Theorem 1.7.3. Let A, X , and Γ all be as above. Suppose there is z : A → (0, 1)

and P ∗ : A → (0, 1) such that for each A ∈ A,

P ∗(A) ≥ sup
µ∈EA

(Pr(A|Eµ))

and

P ∗(A) ≤ z(A)
∏

B∈Γ(A)

(1 − z(B)).

Then, for any finite subset of events B ⊂ A, tB = “the first stage at which all B ∈

B are false” has finite expectation when the lefthanded resample algorithm is run.

The rest of this section constitutes the proof of Theorem 1.7.3, broken up into

subsections.

1.7.1.1 Logs and Moser Trees

We will need to precisely define the probability spaces we are working with. Let Ω

be the probability space of valuations of X . Let X ′ = {xji}|i,j∈N such that each xji

36

has the same probability distribution as xi. Let Ω′ be the probability space of all

valuations the variables in X ′.

It will be helpful to temporarily decouple possible logs of the resample algorithm

from the resample algorithm itself. We call a sequence of events E1, E2, ..., En a legal

log if for each 1 ≤ i < n, Ei ̸≫ Ei+1.

Claim. Every log produced by a run of the resample algorithm is a legal log.

Proof. Let E1, . . . , En be an initial segment of the log of the resample algorithm.

Suppose that Ei ≫ Ei+1. Then, Ei+1 must be false at stage i, as otherwise, the

resample algorithm would have picked Ei+1 to resample at stage i. Therefore, Ei+1

went from false to true after resampling Ei. But Ei ≫ Ei+1 implies that RSP(Ei) ∩

VBL(Ei+1) = ∅, so resampling Ei could not have changed the truth value of Ei+1.

Furthermore, any sub-interval of a legal log is legal. We will use the following

fact.

Lemma 1.7.4. Let E1, E2, ..., En be a legal log. Let 1 ≤ i < j ≤ n and suppose that

Ei ≻ Ej. Then, there is some k with i ≤ k < j such that Ek ∈ Γ+(Ej).

Proof. If Ei ∈ Γ+(Ej) then we are done. Otherwise, Ei ≫ Ej. Since E1, E2, ..., En is

a legal log, there is some k (in particular, k = j−1) with i < k < j and that Ek ̸≫ Ej.

If Ek ∈ Γ+(Ej) then we are done. Otherwise, Ek ≪ Ej. Then, we can fix the least s

such that i < s < j such that Es ≪ Ej. Thus, Es−1 ̸≪ Ej. If Es−1 ∈ Γ+(Ej), then

we are done. Otherwise, Es−1 ≫ Ej. Since Ej ≫ Es and ≫ is transitive, we have

that Es−1 ≫ Es. This contradicts that E1, ..., En is a legal log.

Similarly to the proof of the original algorithmic local lemma, we construct a

Moser tree based on the log. To construct the Moser tree associated with the legal

37

log E1, E2, ..., En, we use the same process as before except that we use the new

definition of Γ(A).

Fix a Moser tree T and a legal log E1, E2, ..., En that produces T . For v ∈ T , let

q(v) be the stage at which v is added to T , so that [v] = Eq(v). Proposition 1.3.3

holds with the same proof.

We will see that requiring the resample algorithm to prioritize events by their

≺-order fixes the order of vertices added during the construction of a given Moser

tree: for any Moser tree T , the most recently added vertex is the one whose label

is ≺-least among all vertices of maximal depth among its neighbors. To be precise,

define M(T) = {v : d(v) = max({d(w) : [w] ∈ Γ+([v])})}. Since the labels of

children of v are neighbors of [v], we have that members of M(T) must be leaves of

M(T), as otherwise they would have a child and hence a neighbor of greater depth.

Furthermore, let [M(T)] = {[v] : v ∈M(T)}. Then, let G(T) = v such that [v] is the

≺-least element of [M(T)]. This is well defined because if two vertices have the same

label then they have different depths, so only one of them can be in M(T). List the

vertices of T as v1, v2, ..., v|T | by v1 = G(T) and vi+1 = G(T \ {v1, ..., vi}).

First we confirm that G(T) indeed extracts the most recently added vertex of T .

Lemma 1.7.5. Let E1, . . . En be a legal log producing a Moser tree T enumerated as

above by T = {v1, . . . , v|T |} with v1 = G(T) and vi+1 = G(T \ {v1, ..., vi}). Then,

q(v1) = min{q(w) : w ∈ T}.

Proof. Let w ∈ T be such that q(w) = min({q(v) : v ∈ T}. First we show that

w ∈ M(T). Then we show that [w] is the ≺-least member of [M(T)] and therefore

that w = G(T) = v1.

38

To see that w ∈ M(T), note that w is the last vertex added to T and therefore

has maximal depth among {v : [v] ∈ Γ+(w)}.

To see that [w] is the ≺-least member of [M(T)], let v be such that [v] is the

≺-least member of [M(T)] and suppose that w ̸= v. Then, [v] ≺ [w]. Since w, v ∈

M(T), [w] ̸∈ Γ+([v]). Therefore, [w] ≫ [v]. By Lemma 1.7.4, there is some k with

q(w) < k < q(v) such that Ek ∈ Γ+([v]). Then, at stage k of constructing the Moser

tree, a vertex v′ with label Ek would be added to T . Since k < q(v), we have that

v would already have been added to the tree. However, since Ek ∈ Γ+([v]), we have

that d(v′) > d(v), contradicting that v ∈M(T).

Next, we show that removing G(T) corresponds to removing an initial segment of

a legal log producing T .

Lemma 1.7.6. Let E1, . . . En be a legal log producing a Moser tree T and let v =

G(T). Then, the legal log Eq(v)+1, . . . En produces the Moser tree T \ {v}.

Proof. Let R be the Moser tree produced at stage q(v) + 1 by the Moser tree con-

struction.

By Lemma 1.7.5, we have that for each w ∈ T , if w ̸= v then q(w) > q(v). Hence,

for each w ∈ T such that w ̸= v, Eq(v)+1, . . . En contains each Eq(w). Therefore, for

each w ∈ T with w ̸= v, we have that w ∈ R. Hence, R = T \ {v}.

Because the events are exactly the same and in the same order, the Moser tree

produced by Eq(v)+1, . . . En is also R = T \ {v}.

We are now ready to give a categorization of all legal logs producing T .

Lemma 1.7.7. Let E1, . . . En be a legal log producing a Moser tree T enumerated as

above by T = {v1, . . . , v|T |} with v1 = G(T) and vi+1 = G(T \ {v1, ..., vi}). Then,

39

q(v1) < q(v2) < q(v3) < ... < q(v|T |) = n. Furthermore, if q(vi) < k < q(vi+1) then

Ek ≪ [vj] for all j > i. Additionally, if k < q(v1) then Ek ≪ [vj] for all j.

Proof. First we show that q(v1) < q(v2) < q(v3) < ... < q(v|T |) by induction.

Base case: The fact that q(v1) = min(q(v) : v ∈ T) is exactly Lemma 1.7.5.

Induction step: Suppose that q(v1) < q(v2) < ... < q(vk). By iterated applications

of Lemma 1.7.6, the legal log Eq(vk)+1, Eq(vk)+2, ..., En produces T \ {v1, v2, ..., vk}. By

Lemma 1.7.5, the least value of q(v) for v ∈ T \ {v1, . . . , vk} in the new legal log is

obtained by v = G(T \ {v1, v2, ..., vk}) = vk+1. This completes the induction.

It remains to show that if q(vi) < k < q(vi+1) then Ek ≪ [vj] for all j > i. For

contradiction, suppose that some there are some k and i such that q(vi) < k < q(vi+1)

and Ek ̸≪ [vj] for some j > i. There are two cases: either Ek ∈ Γ+([vj]) or Ek ≫ [vi].

In both cases, there is some ℓ such q(vi) < ℓ < q(vi+1) and Eℓ ∈ Γ+([vj]). In the first

case, we can set ℓ = k. In the second case, the existence of such an ℓ is given by

Lemma 1.7.4. The existence of this ℓ is a contradiction: because Eℓ is a neighbor of

[vj], we would add another vertex to T at stage ℓ. However, ℓ ̸= q(v) for any v ∈ T .

The same proof works in the case that k < q(v1).

Let r be the root node of T . Since q(r) is maximal, we have that v|T | = r as a

consequence of Lemma 1.7.7. We abuse notation by also writing r = |T |, so that

r = v|T | = vr, with context disambiguating the two notations.

1.7.1.2 The T -check

Fix a Moser tree T with root node r. We will use a different T -check than in the

original algorithmic local lemma. Our new T -check does exactly what the resample

algorithm would do until each A ≪ [v] for all v ∈ T is false. Then, the T -check

40

resamples [G(T)], regardless of any other truth values. Afterwards, it runs the T \

{G(T)}-check, starting with the assignment of the variables that the T -check passed

on to it. If T = ∅ then the T -check acts exactly as the resample algorithm. For each

vi ∈ T , let q̂(vi) be the stage at which the T -check starts doing the T \ {v1, v2, ..., vi}-

check. If this never occurs, then q̂(vi) = ∞. We say that the T -check passes if each

q̂(vi) < ∞ and [vi] is true at stage q̂(vi) before it is resampled. Since r is always of

minimal depth among it’s neighbors,

The reader may find the following equivalent description of the T -check useful.

The T -check runs the resample algorithm until the resample algorithm wants to re-

sample an event that occurs as a label in T . When that happens, the resample

algorithm instead resamples the event [G(T)]. It then removes G(T) from T and

continues the resample algorithm. Continuing in this way, the T -check resamples the

events that occur as labels in T in the order [v1], [v2], . . . , [vr] (although it possibly

will never finish doing so).

Claim. Let S ∈ Ω′. If the resample algorithm run with random source S produces

T , then the T -check passes when run on S.

Proof. Suppose that the resample algorithm produces T at some stage n. Then, by

Lemma 1.7.7, we have that q(v1) < q(v2) < · · · < q(vr). The T -check and resample

algorithm coincide until the resample algorithm resamples an event that occurs as

a label in T . Since the resample algorithm produces T , no labels of nodes in T

can be resampled before q(v1), at which point the resample algorithm resamples [v1].

The T -check would then resample [G(T)] = [v1], so the T -check and the resample

algorithm continue to coincide, so q̂(v1) = q(v1). This process continues inductively

for all stages. Thus, the log of the resample algorithm and the log of the T -check are

41

identical.

Since the logs are identical and both use the same random source, the T -check

and resample algorithm also have identical valuations of the variables at each stage.

In particular, since q̂(vi) = q(vi) for each 1 ≤ i ≤ r, the T - check always finds [vi] to

be true at stage q̂(vi) because the resample algorithm does so as well. Therefore, the

T -check passes.

Thus,

Pr(T is produced by the resample algorithm) ≤ Pr(The T -check passes).

It remains to bound the probability that the T -check passes. First, we now develop

some basic properties of the T -check.

Recall that V̂s(i) is equal to the number times xi has been resampled in the T -

check at the beginning of stage s. We will compare various values of the T -check

when the T -check is run on two different random sources S1, S2 ∈ Ω′. We will freely

think of these values as random variables. For example, V̂t(S1)(i) is the value of V̂t(i)

when the T -check is run on random source S1. We also treat the log of the T -check

as a random variable

l̂og : Ω′ → A≤ω.

First we note that a few important sets are open and therefore measurable.

Proposition 1.7.8. Let T be the Moser tree enumerated as T = {v1, . . . , vr}. Then,

(a) For any finite sequence of events E1, E2, . . . , En, the set

{S ∈ Ω′ : E1, . . . , En is an initial segment of l̂og(S)}

42

is clopen.

(b) For all 1 ≤ i ≤ r and k ∈ ω, the set

{S ∈ Ω′ : q̂(vi)(S) = k}

is clopen.

(c) For all 1 ≤ i ≤ r, k ∈ ω, n ∈ VBL([vi]) and ℓ ∈ range(xn), the set

{S ∈ Ω′ : q̂(vi)(S) = k and V̂q̂(vi)(n) = ℓ}

is clopen.

Proof. Membership of the above sets in (a) - (c) are always determined at a finite stage

in the T -check. Each stage of the T -check uses only finitely many of the valuations

in S. Hence, the sets in (a) - (c) are determined by finitely many elements of X ′, so

they are clopen.

Next, we show that, for each j such that xj ∈ RSP([vi]), the value of V̂q̂(vi)(j)

is constant as a random variable of the random source. In other words, whenever

the T -check checks whether [vi] is true at stage q̂(vi), the variables in RSP([vi]) have

always been resampled the same number of times.

Lemma 1.7.9. For each vi ∈ T and each xj ∈ RSP([vi]), we have that V̂q̂(vi)(j) is

constant as a random variable from the subspace {q̂(r) <∞} ⊂ Ω′ to N.

Proof. Fix vi, xj. Let u(i, j) = {s < i : xj ∈ RSP([vs])}. We will show that V̂q̂(vi)(j) =

u(i, j) whenever q̂(r) <∞. We proceed by induction on |u(i, j)|.

43

Suppose |u(i, j)| = 0. Assume by way of contradiction that V̂q̂(vi)(j) > 0. Then there

is some k < q̂(vi) such that the k’th event Ek of the log has xj as a resample variable.

But then Ek ∈ Γ([vi]), so in particular, Ek ̸≪ [vi]. Hence, each A ≺ Ek is false at

stage k. This also implies that each A ≪ [v] for each [v] ∈ T is false. Therefore, by

definition of the T -check, k = q̂(vℓ) for some ℓ < i. Then, ℓ ∈ u(i, j), contradicting

that u(i, j) = 0.

Suppose that the claim is true whenever |u(i, j)| ≤ n. We show that it is true

for |u(i, j)| = n + 1. Then, u(i, j) = {vk1 , vk2 , ..., vkn+1} for some increasing sequence

k1, k2, . . . , kn+1. Since the sequence is increasing, |u(i, kn+1)| = n. By the induction

hypothesis, V̂q̂(vkn+1
)(j) = n. Hence, V̂q̂(vi)(j) ≥ n + 1. By a similar argument as in

the u(i, j) = 0 case, V̂q̂(vi)(j) ̸> n+ 1, so V̂q̂(vkn+1
)(j) = n+ 1.

We introduce some new notation. For any measurable function τ : Ω′ → Ω, and

any event E ⊂ Ω, define the event Eτ := τ−1(E) = {S ∈ Ω′ : τ(S) ∈ E}. For

A ∈ A, let RSPτ (A) = {xi ◦ τ : xi ∈ RSP(A)} (recall that xi : Ω → range(x) is

a random variable) and similarly for VBLτ (A). For each stage n, fix measurable

functions τn : Ω′ → Ω such that (xi ◦ τn) = x
V̂n(i)
i . In other words, τn sends each

S ′ ∈ Ω′ to the valuation of X at stage n of the T -check, mapping S ′ to µ such that

µ(xi) = S ′(x
V̂n(i)
i).

Recall that {S ∈ Ω′ : q̂(r) < ∞} is an open set. For each v ∈ T , define τv : {S :

Ω′ : q̂(r) <∞} → Ω by

τv = τq̂(v).

The τv are measurable maps because the set

τ−1
v ([v]) = {S ∈ Ω′ : τv(S) satisfies [v]}

44

is open. To see this, note that the condition for the set in is always witnessed at a

finite stage of the T -check.

Note that, if q̂(r) < ∞, then q̂(v) < ∞ for each v ∈ T . Let Prq̂(r)<∞ be the

probability measure on the subspace {q̂(r) < ∞}. When working in this probability

space, we will need to refer to restrictions X|{q̂(r)<∞}, E{q̂(r)<∞}, and τ |{q̂(r)<∞} of

random variables X, events E and measurable functions τ : Ω′ → Ω. We will,

however, not write out the restriction when the context is clear.

By Lemma 1.7.9, we have that, V̂q̂(v)(j) is constant in {q̂(r) <∞} for all v ∈ T and

all xj ∈ RSP([v]). Thus, RSPτvi ([vi]) = {xkj : xj ∈ RSP([vi]) and k = V̂q̂(vi)(j)} ⊂ X ′.

Therefore, we can set Vvi = RSPτvi ([vi]). Furthermore, let

V =
⋃

1≤i≤r

Vvi

= {xkj : there is some v ∈ T such that xj ∈ RSP([v]) and k = V̂q̂(v)(j)}.

The T -check is constructed so that V has no effect on the log, even if q̂(r) = ∞.

Lemma 1.7.10. Let S1, S2 ∈ Ω′ such that xkj (S1) = xkj (S2) for all x
k
j ∈ X ′ \V. Then,

l̂og(S1) = l̂og(S2).

Proof. Suppose that l̂og(S1) ̸= l̂og(S2). Then, let i be least such that l̂og(S1)(i) ̸=

l̂og(S2)(i). Let k be greatest such that q̂(vk)(S1) < i. Since l̂og(S1)|i−1 = l̂og(S2)|i−1,

we also have that q̂(vk)(S1) = q̂(vk)(S2) as well as that k is greatest such that

q̂(vk)(S2) < i. Recall that the T -check resamples [vk+1] at stage i if and only if

all A ∈ {A : A ≪ [vj] for each j > k} are false at stage i. This is equivalent to

l̂og(S)(i) = [vk+1]. To show that this condition being true at stage i is either true for

45

both S1 and S2 or neither S1 nor S2, it is sufficient to show that S1 ∈ Aτi if and only

if S2 ∈ Aτi for each A≪ [vj] for each j > k.

Without loss of generality, suppose S1 ∈ Aτi . We show that S2 ∈ Aτi . The event

Aτi depends only on VBLτi(A) = {xV̂i(n)
n : xn ∈ VBL(A)}, so it is further sufficient

to show that x
V̂i(n)
n (S1) = x

V̂i(n)
n (S2) for each xn ∈ VBL(A). Since xmn (S1) = xmn (S2)

for xmn ̸∈ V , it is enough to show that x
V̂i(n)
n ̸∈ V for every xn ∈ VBL(A) and every

random source S. To see this, suppose that x
V̂i(n)
n ∈ V . Then, V̂i(n) = V̂q̂(vj)(n) for

some j. We check that the following two cases are impossible:

Case 1: Suppose that q̂(vj) < i. Then, xn gets resampled at stage q̂(vj), so V̂q̂(vj)(n) <

V̂i(n), a contradiction.

Case 2: Suppose that q̂(vj) ≥ i. Then, j > k by definition of k. But then,

xn ∈ VBL(A) and xn ∈ RSP([vj]), contradicting that A ≪ [vj] for each j > k.

This completes the claim that l̂og(S1)(i) = [vk+1] is equivalent to l̂og(S1)(i) = [vk+1].

However, it is not possible for both to be true, since l̂og(S1)(i) ̸= l̂og(S2)(i).

Therefore, there are A1, A2 ≪ [vj] for all j > k such that Aτi
1 (S1) is true and Aτi

2 (S2)

is true. We have already seen that if A≪ [vj] for all j > k then Aτi(S1) holds if and

only if Aτi(S2) holds. Since A ≺ B ≪ C implies that A≪ C, it is also the case that

the ≺-least true A at stage i is the same for both S1 and S2. Since A≪ [vj] for each

j > k, l̂og(S1)(i) = A = l̂og(S2)(i), contradicting that l̂og(S1)(i) ̸= l̂og(S2)(i).

1.7.1.3 Bounding the Probability that the T -check Passes

To bound the probability of the T -check passing, we calculate

Pr(The T -check passes) = Pr(The T -check passes ∧ (∀v ∈ T)(q̂(v) <∞))

46

+ Pr(The T -check passes ∧ (∃v ∈ T)(q̂(v) = ∞))

= Pr(The T -check passes ∧ ∀(v ∈ T)(q̂(v) <∞))

= Pr(The T -check passes ∧ q̂(r) <∞)

= Pr
q̂(r)<∞

(∧
r≥j≥1

[vj]
τvj

)
Pr(q̂(r) <∞)

≤ Pr
q̂(r)<∞

(∧
r≥j≥1

[vj]
τvj

)

≤ Pr
q̂(r)<∞

(
[v1]

τv1
∣∣ ∧
r≥j≥2

[vj]
τvj

)
Pr

q̂(r)<∞

(∧
r≥j≥2

[vj]
τvj

)

=
∏

r≥i≥1

Pr
q̂(r)<∞

(
[vi]

τvi
∣∣ ∧
r≥j>i

[vj]
τvj

)
. (1.7.11)

The final piece of the proof of Theorem 1.7.3 is to use the P ∗ to bound Line 1.7.11

factor-wise. To do so, we pull the defining property of P ∗ from Ω back to a subspace

of Ω′. Before proving this, we need to define some notation for making disjoint covers

of Ω and Ω′ by valuations of the variables.

Let M(A) be the set of all valuations of STC(A). Then, the families {Eµ : µ ∈

M(A)} and {τ−1(Eµ) : µ ∈ M(A)} form a partition of Ω and Ω′, respectively. For

each µ ∈ M(A) and x ∈ X , define xµ : Ω → range(x) by

xµ(S) =

µ(x) if x ∈ STC(A)

S(x) if x ̸∈ STC(A).

Finally, let Aµ be the event that A is true under the valuation given by the xµ.

Lemma 1.7.12. For any event B ⊂ {q̂r < ∞} entirely dependent on the variables

47

in X ′ \ Vv,

Pr
q̂(r)<∞

(τ−1
v ([v])|B) ≤ P ∗([v]).

Proof. Fix v ∈ T . For each µ ∈ M([v]), let R(µ) be the set of all valuations ν of

RSP([v]) such that if x = µ(x) and y = ν(x) for all x ∈ STC([v]) and all y ∈ RSP([v]),

then [v] is true. Then, {τ−1
v (Eµ) : µ ∈ M([v])} form an open cover of {q̂[v] < ∞}, so

we get

Pr
q̂(r)<∞

(τ−1
v ([v])|B) =

∑
µ∈M([v])

Pr
q̂(r)<∞

(τ−1
v ([v])|B ∧ τ−1

v (Eµ)) Pr
q̂(r)<∞

(τ−1
v (Eµ))

=
∑

µ∈M([v])

∑
ν∈R(µ)

Pr
q̂(r)<∞

(τ−1(Eν)|B ∧ τ−1
v (Eµ)) Pr

q̂(r)<∞
(τ−1

v (Eµ)).

We have that B ∧ τ−1
v (Eµ) is independent from Vv because both B and τ−1

v (Eµ)

depend entirely on the variables in X ′ \ Vv. This is true for B by assumption and for

τ−1
v (Eµ) due to Lemma 1.7.10. Because τ−1

v (Eν) depends entirely on the variables in

Vv, have that τ−1
v (Eν) and B ∧ τ−1

v (Eµ) are independent. Thus, continuing the above

calculation yields

Pr
q̂(r)<∞

(τ−1
v ([v])|B) =

∑
µ∈M([v])

∑
ν∈R(µ)

Pr
q̂(r)<∞

(τ−1(Eν)) Pr
q̂(r)<∞

(τ−1
v (Eµ))

=
∑

µ∈M([v])

∑
ν∈R(µ)

Pr
Ω

(Eν) Pr
q̂(r)<∞

(τ−1
v (Eµ))

=
∑

µ∈M([v])

Pr
Ω

([v]|Eµ) Pr
q̂(r)<∞

(τ−1
v (Eµ))

≤
∑

µ∈M([v])

P ∗([v]) Pr
q̂(r)<∞

(τ−1
v (Eµ))

= P ∗([v]).

48

To apply Lemma 1.7.12 to bound Line 1.7.11, it remains to show that the event∧
r≥j>i[vj]

τvj depends only on the variables in X ′ \ Vvi for all i.

Proof. Suppose that S1, S2 ∈ Ω′ agree on X ′ \ Vvi . Then, they also agree on X ′ \ V ,

so l̂og(S1) = l̂og(S2). Therefore, V̂k(n)(S1) = V̂k(n)(S2) for each k and n. For each

j > i, we have that q̂(vj) > q̂(vi), so V̂q̂(vj)(n) > V̂q̂(vi)(n) for each xn ∈ RSP([vi]).

Therefore, {x
V̂q̂(vj)

(n)

n : xn ∈ VBL([vj])} is disjoint from {xV̂q̂(vi)
(n)

n : xn ∈ RSP([vi])},

so [vj]
τn depends only on the variables in X ′ \ Vvi .

Finally, we obtain

Pr(The T check passes) ≤
∏
v∈T

P ∗([v])

and therefore that

Pr(The resample algorithm produces T) ≤
∏
v∈T

P ∗([v]).

The rest of the proof goes exactly as the proof of Theorem 1.3.1 did, starting from

Claim 1.3.10 with A replaced by B from the statement of Theorem 1.7.3. This

completes the proof of Theorem 1.7.3.

1.7.2 Computable Lefthanded Local Lemma

We now state the computability conditions for the Computable Lefthanded Local

Lemma. They are very similar to the computability conditions for the Computable

Local Lemma, Theorem 1.4.2, but with a few instance of VBL replaced with RSP.

49

We require that for each x ∈ X , the set {A ∈ A : x ∈ RSP(A)} is finite. This

is an improvement to Theorem 1.4.2 in that RSP(A) ⊂ VBL(A). We also need the

following computability conditions:

1. The events A = {A1, A2, A3, ...} and the sets RSP(Ai) are computably pre-

sented. That is, VBL(Ai), RSP(Ai) and the finite set of assignments of the

variables in VBL(Ai) that make Ai true are all uniformly computable with

respect to i.

2. Each xi has a rational-valued probability distribution that is uniformly com-

putable with respect to i.

3. The code for the finite set of indices {j : xi ∈ RSP(Aj)} is uniformly computable

given i.

4. The order ≺ is computable.

Theorem 1.7.13 (Computable Lefthanded Local Lemma). Let X and A satisfy the

conditions of Theorem 1.7.3 as well as the conditions above. Additionally, require

that there exists a rational constant α ∈ (0, 1) such that, for each A ∈ A,

P ∗(A) ≤ αz(A)
∏

B∈Γ(A)

(1 − z(B)).

Then, there is a computable assignment of X under which each A ∈ A is false.

Proof. Just as for Theorem 1.4.2, we show that the resample algorithm constitutes a

layerwise computable mapping. The proof is completely identical.

50

1.7.3 Applying the Computable Lefthanded Local Lemma

We now prove computable versions of Theorems 1.2.1 and 1.2.2.

Theorem 1.7.14 (Computable Version of Theorem 1.2.1). Given arbitrary small

ε > 0, there is some Nε and a computable {0, 1}-valued sequence such that any two

identical intervals of length n > Nε have distance greater than f(n) = (2 − ε)n.

Proof. Fix ε > 0 and N > 0. We will show that if N is large enough, then Nε = N

witnesses the theorem. We set up the application of Theorem 1.7.13. Let X =

{x1, x2, ...} be the bits in our binary sequence. Recall that Ak,l,n is the event that

[k, k+n− 1] = [l, l+n− 1]. Note that Ak,l,n being false implies that Ak,l,m is false for

each m > n. It is therefore enough to only consider Ak,l,n such that n is minimal for

l− k, that is, such that l− k = ⌈f(n)⌉. Let A = {Ak,l,n : l− k = ⌈f(n)⌉ and n > N}.

Let RSP(Ak,l,n) = [l, l+ n− 1]. Then, STC(Ak,l,n) = [k, k + n− 1] \ [l, l+ n− 1]. We

first check the additional computability requirements:

� For each xi, there are fewer than i2 many elements in {Ak,l,n ∈ A : xi ∈

RSP(Ak,l,n)} ⊂ {Ak,l,⌈f(l−k)⌉ : k < l ≤ i}, so the set of events that have xi in

their resample sets is finite.

� From Ak,l,n ∈ A, we have that VBL(Ak,l,n), RSP(Ak,l,n) and the set of valuations

of VBL(Ak,l,n) satisfying Ak,l,n are all uniformly computable.

� Each xi is a fair coin flip, and therefore has uniformly computable distribution.

� We can uniformly compute {(k, l, n) : xi ∈ RSP(Ak,l,n)}.

To check the algorithmic conditions, we confirm that

� RSP(Ak,l,n) is an interval

51

� max(STC(Ak,l,n)) < min(RSP(Ak,l,n)).

Finally, we check the probabilistic conditions. Let P ∗(Ak,l,n) = 2−n. We need to show

that for any valuation µ of STC(Ak,l,n),

P ∗(Ak,l,n) ≥ Pr(Ak,l,n|Eµ).

In fact, P ∗(Ak,l,n) = Pr(Ak,l,n|Eµ). This is easy to see if RSP(Ak,l,n) ∩ [k, k + n) = ∅.

If RSP(Ak,l,n) ∩ [k, k + n) ̸= ∅, suppose the entries of [k, l) are given by valuation µ

and l = k+j. Then for Ak,l,n to be true, xl+i must equal µ(xk+i) for all i ≤ j as in the

case where the compared intervals don’t overlap. Then, when we consider the first

non-overlap xl+j, still do not have a choice, because xl+j must be equal to xl, whose

value must be µ(xk). Thus, there is only one valuation of the variables in RSP(Ak,l,n)

under which Ak,l,n is true when the variables in STC(Ak,l,n) have values given by µ.

So, Pr(Ak,l,n|Eµ) = 2−n = P ∗(Ak,l,n).

Finally, we show that the main local lemma condition holds. As in the proof of

Theorem 1.2.4, let z(Ak,l,n) = 1
f(n)n3 . We need to show that there is α ∈ (0, 1), such

that each Ak0,l0,n0 ∈ A,

P ∗(Ak0,l0,n0) = 2−n0 ≤ αz(Ak0,l0,n0)
∏

Ak,l,n∈Γ(Ak0,l0,n0
)

(1 − z(Ak0,l0,n0)).

Up to the additional constant factor of α which disappears in the limit, the proof

of this is identical to the corresponding part in the proof of Theorem 1.2.4 as the

neighborhoods are smaller while the probabilities are the same.

Theorem 1.7.15 (Computable Version of Theorem 1.2.2). Given arbitrary small

ε > 0 there is some Nε and a computable {0, 1}-valued sequence a1, a2, a3, ... such that

52

any two adjacent intervals of length n > Nε differ in at least (1
2
− ε)n many places;

that is, for each k and n > Nε, ak+i ̸= ak+n+i for at least (1
2
− ε)n many i with

0 ≤ i < n.

Proof. Fix ε > 0 and N > 0. We will show that if N is large enough, then Nε =

N witnesses the theorem. We again apply the lefthanded computable Lovász local

lemma. Let X = {x1, x2, ...} be the bits in our binary sequence. Recall that Ak,n is

the event that blocks [k, k + n − 1] and [k + n, k + 2n − 1] share at least (1
2

+ ε)n

many entries. Let A = {Ak,n : n > N} and RSP(Ak,n) = [k + n, k + 2n − 1].

Then, STC(Ak,n) = [k + n, k + 2n − 1]. We first check the additional computability

requirements:

� For each xi, there are fewer than i2 many elements in {Ak,n ∈ A : xi ∈

RSP(Ak,n)} ⊂ {Ak,n : k + n ≤ i}, so the set of events that have xi in their

resample sets is finite.

� A, RSP(Ak,n) and VBL(Ak,n) are uniformly computable.

� Each xi is a fair coin flip, and therefore has uniformly computable distribution.

� We can uniformly compute {(k, n) : xi ∈ RSP(Ak,n}.

To check the algorithmic conditions, we confirm that

� RSP(Ak,l,n) is an interval

� max(STC(Ak,l,n)) < min(RSP(Ak,l,n)).

Finally, we check the probabilistic conditions. The probability that RSP(Ai,n) shares

53

exactly k entries with STC(Ai,n) is
(
n
k

)
2−k, so we set

P ∗(Ai,n) = Pr(Ai,n) = 2−n

n∑
r=⌈(1

2
+ε)n⌉

(
n

r

)
.

We need to show that for any valuation µ of STC(Ai,n),

P ∗(Ak,l,n) ≥ Pr(Ai,n|Eµ).

This follow directly from our original calculation of Pr(Ai,n), since RSP(Ak,n)∩ [k, n+

k − 1] = ∅ for all k and n, so Pr(Ai,n|Eµ) = Pr(Ai,n).

Finally, it remains to show that the local lemma condition holds. Let zi,n = bn

n
for

some α < b < 1. Fix Ai0,n0 . Γ(Ai0,n0) = {Ai,n : i0 + n0 − 2n+ 1 ≤ i ≤ i0 + 2n0 − 1},

so it suffices for the Lovasz local lemma to check that

1

2
bn

∞∏
n=Nε

i0+2n0−1−m∏
i=i0+n0−2n+1

(1 − bm) ≥ n0α
n0 .

for large enough Nε, with 1
2

being the α < 1 in from the computable lefthanded Lovász

local lemma. Up to the additional factor of 1
2
, the proof of this is near-identical to

the corresponding part in the proof of Theorem 1.2.7.

1.8 Binary Sequence Games

Theorem 1.7.13 lets us apply the local lemma to sets of events which depend on

arbitrarily long initial segments of the X other than the variables that we resample.

We can make full use of this property by having a hypothetical opponent react to our

54

choices for the xi. Consider a game called the binary sequence game in which two

players take turns selecting bits in a binary sequence. Player 1 picks the odd bits and

player 2 picks the even bits. The binary sequence game generates the sequence

a1a2a3a4a5a6 · · · = e1d2e3d4e5d6 . . .

where e2n+1 is chosen by player 1 with knowledge of all preceding bits in the sequence

(but not future bits) and player 2 chooses d2n similarly. Pegden (2011) studied The-

orems 1.2.1 and 1.2.2 in the context of binary sequence games. He found that player

1 has a strategy to ensure that binary sequence game produces a non-repetitive se-

quence, as stated below:

Theorem 1.8.1 ([26]). For every ε > 0 there is an Nε such that Player 1 has a

strategy in the binary sequence game ensuring that any two identical blocks [i, i+n−

1] = xixi+1xi+2 . . . xi+n−1 and [j, j + n − 1] = xjxj+1xj+2 . . . xj+n−1 of length n > Nε

have distance at least f(n) = (2− ε)n/2. That is, if xi+s = xj+s for all 0 ≤ s < n and

n > Nε, then |i− j| < (2 − ε)n/2.

Theorem 1.8.2 ([26]). For every ε > 0 there is an Nε such that Player 1 has a

strategy in the binary sequence game ensuring that any two adjacent blocks [i, i+n−1]

and [i+ n, i+ 2n− 1] of length n > Nε differ in at least n
(
1
4
− ε
)
places. That is, if

n > Nε then xi+s ̸= xi+n+s for at least n
(
1
4
− ε
)
many 0 ≤ s < n.

Unlike Theorems 1.2.1 and 1.2.2, even the finite versions of these theorems cannot

be proven using the classical local lemma. This is because player two can change

their moves depending on what player one does. This means that, when setting up

the local lemma to find a strategy for player 1, each event depends on every move

55

that came before it. For example in the context of Theorem 1.8.1, the event Ak,l,n

that the intervals [i, i + n − 1] and [l, l + n − 1] are identical depends not only on

the moves player 1 makes in those intervals, but on every move player 1 has made

beforehand. This explodes the size of the neighborhood relation. To prove Theorems

1.8.1 and 1.8.2, Pegden introduces an extension of the LLL called the lefthanded local

lemma. Pegden uses the lefthanded local lemma to prove the following finite version

of Theorem 1.8.1.

Proposition 1.8.3. For every ε > 0 there is an Nε such that, for each M > 0 and

player 2 strategy g in the binary sequence game of lengthM length, there is a sequence

e1e3e5...eM of player 1 moves that when played against Φ, any two identical blocks of

length n > Nε in the resulting sequence have distance at least (2 − ε)n/2.

The full Theorem 1.8.1 results from the following compactness argument:

Proof of 1.8.1. By open determinacy, it is sufficient to show that there is no winning

strategy for player 2. Fix player 2 strategy g. Fix game length M > 0. By the

proposition, there is a string of player 1 moves such that g does not win within M

moves. Let T be the tree of such strings of player 1 moves. T is a finitely branching

tree, so by König’s lemma, there is an infinite path through T , so f is not a winning

strategy for player 2. Since player 2 has no winning strategy and they are playing an

open game, player 1 has a winning strategy by open determinacy.

The proof of Theorem 1.8.2 follows the same pattern.

This proof is non-constructive on account of the use of both König’s lemma and

open determinacy. By using Theorem 1.7.13, we can effectivize this use of König’s

lemma: we will show that T has an f -computable path. It remains open whether or

not effective versions of Theorems 1.8.1 and 1.8.2 are true.

56

To prove that T has an f -computable path, we once again apply Theorem 1.7.13.

To set up the local lemma in the proofs of the following two theorems, fix player

2 strategy g. Let the probability space be 22N+1 = {e = e1, e3, e5, ...} with {x =

x1, x3, x5, ...} as a random variable x : 22N+1 → {0, 1} such that x2i+1(e) = e2i+1.

Then, we can interpret player 2’s moves d2, d4, d6, ... as functions 22N+1 → {0, 1} with

d2i(e) = g(e1, e3, ..., e2i−1). Likewise, our sequence a(x) = a1(x), a2(x), a3(x), ... is a

sequence of random variables with

ak(e) =

xk(e) if k = 2n+ 1 for some n ∈ N

dk(e) otherwise

.

Theorem 1.8.4. For every ε > 0 there is an Nε such that for each player 2 strategy

g in the binary sequence game, there is a g-computable sequence e1e3e5... of player 1

moves that when played against g, any two identical blocks of length n > Nε in the

resulting sequence have distance at least f(n) = (2 − ε)n/2.

Proof. Fix ε > 0 and N > 0. We will show that if N is large enough, then Nε = N

witnesses the theorem. Define Ak,l,n as before. Since all of player 1s previous moves

can effect the truth of Ak,l,n, VBL(Ak,l,n) = [0, l + n) ∩ X = {x2i+1 : 2i+ 1 < l + n}.

Set RSP(Ak,l,n) = [l, l + n − 1] ∩ X . Let A = {Ak,l,n : l − k = ⌈f(n)⌉ and n >

N}. For the same reason as in the proof for the non-game version, avoiding each

Ak,l,n ∈ A is sufficient. Although we do not need to, we will assume that N is large

enough so that f(n) > n for all n > N . Then, l − k > n for each Ak,l,n ∈ A, so

[k, k + n− 1] ∩ [l, l + n− 1] = ∅ for each Ak,l,n ∈ A. The first things to check are the

computability requirements of Theorem 1.7.13.

� For each x2i+1, there are fewer than i2 many elements in {Ak,l,n ∈ A : x2i+1 ∈

57

RSP(Ak,l,n)} ⊂ {Ak,l,⌈f(l−k)⌉ : k < l ≤ 2i + 1}, so the set of events that have

x2i+1 in their resample sets is finite.

� From Ak,l,n ∈ A, VBL(Ak,l,n) and RSP(Ak,l,n) are uniformly computable. To

determine the set of valuations of VBL(Ak,l,n) which satisfy Ak,l,n, we need

information about g, so these valuations are uniformly g-computable.

� Each xi is a fair coin flip, and therefore has uniformly computable distribution.

� We can uniformly compute {(k, l, n) : xi ∈ RSP(Ak,l,n)}.

The algorithmic conditions are true for the same reason as they were for the proof

of the computable version of Theorem 1.2.1. To check the probabilistic conditions,

we start with the P ∗ condition. Fix Ak,l,n ∈ A. Our guiding principle is to pick

P ∗(Ak,l,n) as small as possible such that, for each valuation µ of STC(Ak,l,n), Pr(Ak,l,n |

Eµ) ≤ P ∗(Ak,l,n). Player 1 has control of half of the bits, so it seems intuitive

that P ∗(Ak,l,n) = 2−(n−1)/(2) is satisfactory. To see this, fix µ that is a valuation

of STC(Ak,l,n). Then, since STC(Ak,l,n) is an initial segment of player 1 moves, µ

fixes the initial segment a1, a2, ..., amin(RSP(Ak,l,n))−1. Thus, for each S, S ′ ∈ Eµ and

i ≤ max(STC(Ak,l,n)), we have that ai(S) = ai(S
′). Let µ(ai) be this constant ai(S).

Let Eµ,Ak,l,n
be the event that for each x2i+1 ∈ RSP(Ak,l,n), x2i+1 = µ(a2i+1−(l−k)).

Then (Ak,l,n ∩ Eµ) ⊂ Eµ,Ak,l,n
. Trivially, (Ak,l,n ∩ Eµ) ⊂ Eµ, so

(Ak,l,n ∩ Eµ) ⊂ (Eµ,Ak,l,n
∩ Eµ).

Since Eµ and Eµ,Ak,l,n
are statements about the of values of disjoint sets of independent

58

random variables, they are independent. Therefore,

Pr(Ak,l,n|Eµ) =
Pr(Ak,l,n ∩ Eµ)

Pr(Eµ)

≤
Pr(Eµ,Ak,l,n

∩ Eµ)

Pr(Eµ)

= Pr(Eµ,Ak,l,n
).

|RSP(Ak,l,n)| ≥ (n− 1)/(2), so Pr(Ak,l,n|Eµ) ≤ Pr(Eµ,Ak,l,n
) ≤ 2−(n−1)/(2), as desired.

Next we are left to show that there is z : A → (0, 1) such that

P ∗(Ak,l,n) ≤ z(Ak,l,n)
∏

B∈Γ(Ak,l,n)

(1 − z(B)). (1.8.5)

The proof of Equation 1.8.5 is almost identical to the corresponding part of the proof

of Theorem 1.2.1, with the definition of f(n) updated.

Theorem 1.8.6. For every ε > 0 there is an Nε such that for each player 2 strategy

g in the binary sequence game, there is a g-computable sequence e1e3e5... of player 1

moves that when played against g, any two adjacent blocks of length n > Nε in the

resulting sequence differ in at least n(1
4
− ε) many entries.

Proof. Fix ε > 0 and N > 0. We will show that if N is large enough, then Nε = N

witnesses the theorem. For each k, n ∈ N with k < l, let Ak,n be the event that

blocks ak, ak+1, ..., ak+n−1 and ak+n, ak+n+1, ..., ak+2n−1 share at least (3
4

+ ε)n many

entries. Then, VBL(Ak,n) = ([0, k + 2n) ∩ X) = {x2i+1 : k ≤ 2i + 1 ≤ k + 2n − 1}.

Set RSP(Ak,n) = [k + n, k + 2n) ∩ X . Let A = {Ak,n : n > N}. First, we check the

computability requirements of Theorem 1.7.13.

� For each x2i+1, there are fewer than (2i + 1)2 many elements in {Ak,n ∈ A :

59

x2i+1 ∈ RSP(Ak,n)} ⊂ {Ak,n : k + n ≤ 2i + 1}, so the set of events that have

x2i+1 in their resample sets is finite.

� From Ak,n ∈ A, VBL(Ak,n) and RSP(Ak,n) are uniformly computable. To deter-

mine the set of valuations of VBL(Ak,n) which satisfy Ak,n, we need information

about g, so these valuations are uniformly g-computable.

� Each xi is a fair coin flip, and therefore has uniformly computable distribution.

� We can uniformly compute {(k, n) : xi ∈ RSP(Ak,n)}.

The algorithmic conditions are true for the same reason as they were for the proof

of the computable version of Theorem 1.2.2. To check the probabilistic conditions, we

start with the P ∗ condition. Fix Ak,n ∈ A. Our guiding principle is to pick P ∗(Ak,l,n)

as small as possible such that, for each valuation µ of STC(Ak,n), Pr(Ak,n | Eµ) ≤

P ∗(Ak,n). Player 1 has control of half of the bits, and we cannot rely on player 2 not

matching any bits, so we choose

P ∗(Ak,n) =
1

2⌊n/2⌋

⌊n/2⌋∑
r=⌈(1

4
+ε)n⌉

(
⌊n/2⌋
r

)
.

To see this suffices, fix µ that is a valuation STC(Ak,n). Then, since STC(Ak,n) is an

initial segment of player 1 moves, µ fixes the initial segment a1, a2, ..., ak+n−1. Thus,

for each S, S ′ ∈ Eµ and i ≤ (k+n−1), we have that ai(S) = ai(S
′). Let µ(ai) be this

constant ai(S). Fix S ∈ Eµ. Then, ai(s) = µ(ai) for each i ≤ k + n− 1. If S ∈ Ak,n,

then it is necessary that player 1s moves in [k + n, k + 2n) match at least ⌊(1
4

+ ε)n⌋

many bits on their turn, even if player 2 always matches the corresponding bit each

of their at most ⌈n/2⌉ moves. P ∗(Ak,n) is the probability that player 1 matches at

60

least ⌊(1
4

+ ε)n⌋ bits, which is required for Ak,n to be true.

Next we are left to show that there is z : A → (0, 1) such that

P ∗(Ak,l,n) ≤ z(Ak,l,n)
∏

B∈Γ(Ak,l,n)

(1 − z(B)). (1.8.7)

The proof of Equation 1.8.7 is almost identical to the corresponding part of the proof

of theorem 1.2.2.

Player 2 has a similar ability to defeat fixed sequences.

Proposition 1.8.8. Let {ek2i+1}i,k∈ω be a {0, 1}-valued matrix. Then, for any odd N ,

there is a sequence {d2i}i∈ω ≤T {ek2i+1}i,k∈ω such that, for any k, the sequence

a1a2a3... = ek1d2e
k
3d4e

k
5...

has at least one pair of identical adjacent intervals of length N .

Proof. We will show that for each k, we can defeat ek2i with finitely many moves. The

full statement follows by concatenating these moves together.

We will compare the interval [1, N] with [N + 1, 2N]. Thus, we need ai = ai+N for

1 ≤ i ≤ N . For 1 ≤ t ≤ N
2

, let d2t = e2t+N and let d1+N+2t = e2t+1. Then, for even

i = 2t, we have that ai = d2t = e2t+N = ai+N and for odd i = 2t + 1 we have that

ai = e2t+1 = d1+N+2t = a2t+1+N .

1.9 Conclusion

We conclude with some open questions arising from this work.

61

There is scant evidence to suggest that the conditions of Theorems 1.7.3 and

1.7.13 are optimal for making the modified resample algorithm a layerwise computable

mapping. In particular, the interaction between the RSP sets and ≺ is somewhat

unwieldy and part of the reason why the RSP sets must be intervals that cannot

precede any element of their corresponding STC sets.

Question 1.9.1. How can the conditions of Theorems 1.7.3 and 1.7.13 be loosened?

While we can computably defeat any player 2 strategy in the binary sequence

games, it is still unknown whether the indeterminacy argument that pastes these

winning moves into a full strategy is computable.

Question 1.9.2. Are there computable winning strategies for the binary sequence

games in Theorems 1.8.4 and 1.8.6?

The effective LLL has been applied to several problems with some relation to

Hindman’s theorem (HT) [19, 22, 8]. Restricted forms of HT have been of interest

because they are often difficult to prove without proving the entirety of HT. It is

possible that Theorem 1.7.13 has some applications in this area as well.

Question 1.9.3. How can Theorem 1.7.13 be applied in reverse math and com-

putability theory in general?

Chapter 2

Cohesive Powers

2.1 Introduction

Cohesive powers are an effective analogue of the ultrapower construction. Fix a

computable structure M, and consider the behavior of partial computable functions

φ → |M|. In general, φ can behave in a very disorderly way. Remarkably, if one

looks at the behavior of φ on a cohesive set, they will find a well defined structure

sharing many properties with M.

An infinite set C ⊂ ω is cohesive if, for each computably enumerable set W ,

we have that C ⊂∗ W or C ⊂∗ W . Fix a computable language L, a computable

L-structure M and a cohesive set C. The cohesive power
∏

C M of M over C is

defined over the equivalence classes of ∼C= {(φ, ψ) : φ and ψ are partial computable

functions and C ⊂∗ {x : φ(x)↓ = ψ(x)↓}}. The interpretations of the constant,

function, and relation symbols are defined in a natural way.

62

63

Definition 2.1.1. The cohesive power
∏

C M of M over C is defined as follows.

� Let D = {φ | φ : ω →M is a partial computable function and C ⊂∗ dom(φ)}

� For φ, ψ ∈ D, define equivalence relation ∼C by φ ∼C ψ if and only if C ⊂∗

{x : φ(x)↓ = ψ(x)↓}. Denote the equivalence class of φ under ∼C by [φ].

� The domain of
∏

C M is {[φ] : φ ∈ D}.

� Let R be an n-ary relation symbol of L. Interpret R in
∏

C M by

∏
C

M |= R([φ1], . . . , [φn]) if and only if

C ⊂∗ {x : φi(x) ↓ for all i < n and M |= R(φ1(x), . . . , φn(x))}.

� Let f be an n-ary function symbol of L. Interpret f in
∏

C M by

f
∏

C M([φ1], . . . , [φn]) = [ψ]

where

ψ(x) =

fM(φ1(x), . . . , φn(x)) if φi(x)↓ for 1 ≤ i ≤ n

↑ otherwise.

� Let c be a constant symbol of L. Interpret c in
∏

C M by

c
∏

C M = [ψ]

where ψ(x) = cM for all x.

64

Rumen Dimitrov [10] introduced cohesive powers and proved the following ana-

logue to Loś’s theorem.

Theorem 2.1.2 (Fundamental Theorem of Cohesive Powers [10]). Let A be a com-

putable L-structure and C be a cohesive set. Then,

1. Let Ψ(x1, . . . , xm) be a boolean combination of Σ1 and Π1 formulas. Then, for

any [φ1], . . . , [φm] ∈
∏

C A,

∏
C

A |= Φ([φ1], . . . , [φm]) ⇐⇒

C ⊂∗

{
i : i ∈

⋂
j≤m

dom(φj) and A |= Φ(φ1(i) . . . , φm(i))

}
.

2. Let Φ be a Σ3 L-sentence. Then A |= Φ implies
∏

C A |= Φ.

3. Let Φ be a boolean combination of Σ2 and Π2 L-sentences. Then,
∏

C A |= Φ if

and only if A |= Φ.

Every cohesive power ΠCM contains a copy of M. We embed M into
∏

C M by

the mapping sending a ∈ M to th total constant functions which always outputs a.

We call this the canonical embedding. Part 3 of Theorem 2.1.2 holds with parameters

from M interpreted by the canonical embedding.

In this chapter, we classify the cohesive powers of computable equivalence struc-

tures (Theorem 2.2.3) and computable injection structures (Theorem 2.2.6). Finally,

we extend a result of Dimitrov, Harizanov, Morozov, Shafer, Soskova, and Vatev [12]

concerning the finite condensation of cohesive powers of computable linear orders of

order type ω to also apply to orders of type ζ.

65

2.2 Some Classifications of Cohesive Powers

2.2.1 Equivalence Structures

Dimitrov, Harizanov, Morozov, Shafer, Soskova, and Vatev [11] study the isomor-

phism types of cohesive powers of linear orders. Cohesive powers of equivalence

relations are relatively simpler.

Definition 2.2.1. An equivalence structure is a structure in the language L = {≡}

such that ≡ is a transitive, reflexive, and symmetric binary relation.

Since being transitive, reflexive, and symmetric is a Π1 property, Theorem 2.1.2

tells us that
∏

C M is an equivalence structure for every cohesive set C and com-

putable equivalence structure M. In the language of equivalence structures, the

existence of at least m equivalence classes of size n is expressible by a Σ2 formula,

so the existence of exactly m equivalance classes of size n is expressible by a boolean

combination of Σ2 and Π2 formulas. Therefore, Theorem 2.1.2 tells us that cohesive

powers preserve the number of equivalence classes of each finite size. Since cohe-

sive powers are countable structures, analysis of the number of countable equivalence

classes is enough to obtain a complete categorization. For an equivalence structure

M and a ∈ |M|, let [a]M denote the ≡M-equivalence class of a.

Theorem 2.2.2. Let M be a computable equivalence structure and let C be a cohesive

set. Then,

1. M and
∏

C M have the same number of equivalence classes of each finite size.

2.
∏

C M has an infinite equivalence class if and only if, for each N ∈ N, M has

an equivalence class of size larger than N .

66

3.
∏

C M has infinitely many infinite equivalence classes if and only if M has

an infinite family F of equivalence classes such that for each N ∈ N, the set

{E ∈ F : |E| > N} is infinite.

Proof. As mentioned above, (1) follows immediately from Theorem 2.1.2.

To prove (2), first suppose that
∏

C M has an infinite equivalence class. The

sentence saying that x is in an equivalence class of size at least n is Σ1, so the

sentence

An : (∃x)(x is in an equivalence class of size at least n)

is also Σ1. By assumption,
∏

C M |= AN for every N , hence, by Theorem 2.1.2,

M |= AN for every N , which is exactly what we wanted to show.

Now, suppose that for each N ∈ N, M has an equivalence class of size larger

than N . We can construct a computable list a1, a2, · · · ∈ M such that |[an|| ≥ 2n

for each n by searching |M| until we have found witnesses guaranteeing large enough

equivalence classes. Then, |[aN] \ {a1, . . . , aN−1}| ≥ N . Then, define φ(i) = ai for all

i. To see that the equivalence class of [φ] is infinite, define

φj(i) =

ai if i < j

The j’th element of [ai] if i ≥ j

.

Then, each φn is pointwise ≡A-equivalent to φ and eventually pointwise non-equal to

φm for each m ̸= n. Hence, [φ] has an infinite equivalence class in
∏

C M.

To prove (3), first suppose that M has such a family F of equivalence classes. We

first note that there exists a computable matrix {aji} with each aji ∈ |M| and with

the properties

67

� Each [aji]M has at least i elements.

� For each j′ ̸= j, we have aji ̸≡M aj
′

i′

We can compute such a matrix because, for each i, there are infinitely many non-

equivalent elements of M whose equivalence class has size greater than i. We can

enumerate these elements and confirm that they are not equivalent computably, al-

lowing us to chose an aji for each j. More formally, at step s = ⟨i, j⟩, pick aji such

that |[aji]| > i and aji ̸≡M aj
′

i′ for each ⟨i′, j′⟩ < s.

Let φj(i) = aji . The first condition on aji allows us to apply the argument in part

(2) of this theorem to show that [φj] has an infinite equivalence class. The second

condition on aji ensures that [φj] ̸≡∏
C M [φj′] for each j ̸= j′. Hence,

∏
C M has

infinitely many infinite equivalence classes.

Now suppose that
∏

C M has infinitely many infinite equivalence classes. Let

Bn,m be a formula saying that there are at least m many equivalence classes of size

at least n. Thus,
∏

C M |= Bn,m for each n and m. Also, Bn,m is equivalent to a Σ1

formula, so by Theorem 2.1.2, we have that

M |= Bn,m for every n,m ∈ N.

The set of all equivalence classes of witnesses to the Bn,m in M constitute an instance

of the required family F .

We can restate Theorem 2.2.2 as conditions for when M ∼=
∏

C M.

Theorem 2.2.3. Let M be a computable equivalence structure and let C be a cohesive

set. Then,
∏

C M ≁= M if and only if both of the following hold.

68

� M has finitely many countable equivalence classes and

� For each N ∈ ω, there is n > N such that M has an equivalence class of size

n > N .

Furthermore, if
∏

C M ̸∼= M then
∏

C M has countably many infinite equivalence

classes.

Proof. Suppose that M has finitely many countable equivalence classes and for each

N ∈ ω, there is n > N such that M has an equivalence class of size n > N . Then, by

Theorem 2.2.2, the cohesive power
∏

C M has infinitely many countable equivalence

classes and hence
∏

C M ≁= M.

Now suppose that
∏

C M ≁= M. We have already seen that M and
∏

C M have

the same amount of each finite equivalence class. Hence, they must have different

amounts of countable equivalence classes. Suppose for contradiction that M has a

family F of infinitely many infinite equivalence classes. Then, F satisfies the condi-

tion of part (3) of Theorem 2.2.2, so
∏

C M has infinitely many infinite equivalence

classes, a contradiction, so
∏

C M ≁= M implies that M has finitely many countable

equivalence classes.

Now suppose for contradiction that there is N ∈ ω such that all equivalence classes

of M have size less than N . Then,
∏

C M has only finite equivalence classes. Since

the number equivalence classes of each finite size is preserved by cohesive powers, we

have that
∏

C M ∼= M, a contradiction. Hence,
∏

C M ̸∼= M implies that for each

N ∈ ω, there is n > N such that M has an equivalence class of size n > N .

69

2.2.2 Injection Structures

Definition 2.2.4. An injection structure is a structure in the language L = {f} such

that f is an injective unary function.

Cenzer, Harizanov, and Remmel [7] study computability theoretic properties of

injection structures. Injection structures are similar to equivalence relations because

they can be decomposed into finite cycles, ω-chains and Z-chains. If M is a com-

putable injection structure, define equivalence relation ∼ by x ∼ y if and only if x and

y are part of the same cycle, ω-chain or Z-chain. Then, ∼ is computably enumerable.

Similarly to equivalence relations, if M has exactly m cycles of size n, then the same

is true for
∏

C M, since having at least m cycles of size n is expressible with a Σ1

formula so having exactly m cycles of size n is expressible with a a boolean combi-

nation of Σ1 and Π1 formulas. Having at least m elements without a predecessor is

expressible using a boolean combination of Σ1 and Π1 formulas, so having exactly m

elements without a predecessor is expressible using a boolean combination of Σ2 and

Π2 formulas. Therefore, the number of ω chains is also preserved. To obtain a full

categorization, it remains to describe the number of Z-chains in
∏

C M.

Theorem 2.2.5.
∏

C A has no Z-chains if and only if A consists entirely of finite

cycles whose sizes are all below some upper bound N ∈ N. Otherwise,
∏

C A has

infinitely many Z-chains.

Proof. For the backwards direction, suppose that A consists entirely of finite cycles

whose sizes are all below some upper bound N ∈ N. Let An(x) be a quantifier

free formula saying that x is in a cycle of length less then or equal to n. Then,

A |= ∀xAN(x), so by Theorem 2.1.2,
∏

C A |= ∀xAN(x), so
∏

C A has no Z-chains.

70

For the forwards direction, suppose that A does not consist entirely of finite

cycles whose sizes are all below some upper bound N ∈ N. Thus, we can compute

a sequence a1, a2, · · · ∈ |A| such that f i(ai) ̸= f j(ai) for each i and each 0 ≤ j < i.

We can compute such a sequence by setting ai to be the first element found such

that f j(ai) ̸= ai for all 0 < j ≤ i. Using this sequence, we will show that
∏

C A has

infinitely many Z-chains.

Define partial computable function φ(i) = f i(ai). We have that, for each n, the

set {i : (∃j < n)fn(φ(i)) = f j(φ(i))} is finite, C ⊂∗ {i : fn(φ(i)) ̸= φ(i)}, so [φ] has

infinitely many successors by Theorem 2.1.2. Similarly, the n’th predecessor of [φ] is

given by the equivalence class of

ψ(i) =

f i−n(ai) if i ≥ n

ai otherwise

.

Thus, [φ] is part of a Z-chain.

For each rational number n/m ∈ Q ∩ [0, 1], we can find an element of another

Z-chain by setting φ n
m

(i) = f⌊
ni
m⌋(ai).

Along with the preceding discussion on ω-chains and cycles, Theorem 2.2.5 gives

us the following categorization of cohesive powers of injection structures.

Theorem 2.2.6. Let M be a computable injection structure and let C be a cohesive

set. Then

� M and
∏

C M have exactly the same number of ω-chains and exactly the same

number of each finite cycle of each size.

�

∏
C A has no Z-chains if and only if A consists entirely of finite cycles whose

71

sizes are all below some upper bound N ∈ N. Otherwise,
∏

C A has infinitely

many Z-chains.

Therefore, M ∼=
∏

C M if and only if M contains only cycles whose sizes have

uniform bound N ∈ N.

Proof. Immediate from Theorem 2.2.5.

2.3 Finite Condensation of Cohesive Powers of ζ

In this section, we categorize finite condensations of cohesive powers of copies of ζ

by co-c.e. cohesive sets. The finite condensation of a linear order is the structure of

the linear order when points that have only finitely many points in between them are

identified.

Definition 2.3.1. Fix a linear order A. For x, y ∈ A, let [x, y] = {z ∈ |A| : x ≤

z ≤ y}. For x ∈ |A|, let cF(x) = {y : [x, y] is finite ory ≤ x and [y, x] is finite}. The

finite condensation cF(A) is the linear order on the image of cF on the universe of A

induced by the order relation of A.

For a linear order A, let cF(A) be the finite condensation of A. Also, we denote

by cAF the function cF : A → cF(A) specifically for A when it is not clear from the

context. We also write [x, y]A to be the interval between x and y taken as elements

of A.

Lemma 2.3.2. Let A be a linear order and I ⊂ A be an interval. Then, cAF (I) ∼=

cF(I).

72

Proof. We define an isomorphism φ : cF(I) → cAF (I) by φ(cIF(x)) = cAF (x). To see

that this is well defined, suppose that x, y ∈ I and that cIF(x) = cIF(y) and without

loss of generality that x ≤ y. Then, [x, y]I is finite. Since I is in interval in A, we

have that [x, y]I = [x, y]A, so [x, y]A is also finite. Therefore, cAF (x) = cAF (y).

To see that φ is onto, fix P ∈ cAF (I). Then there is x ∈ I such that cAF(x) = P

and hence φ(cIF(x)) = P . To see that φ is 1-1, fix P,Q ∈ cF(I) and suppose that

φ(P) = φ(Q). Fix p, q ∈ I such that p < q and cIF(p) = P and cIF(q) = Q. Then,

cAF (p) = φ(P) = φ(Q) = cAF (q), so the interval [p, q]A is finite. Because I ⊂ A, we

have that [p, q]I is also finite. Thus, cIF(p) = cIF(q) and hence P = Q. The map φ is

order-preserving because both cF(A) and cF(I) inherit their ordering from A.

Let A,B, ℓ1, ℓ2, ℓ3, and ℓ4 be structures in the language of linear orders. Suppose

that cF(A) ∼= ℓ1 + ℓ2 and that cF(B) ∼= ℓ3 + ℓ4. We abuse notation to interchange

elements of cF(A) and cF(B) with their images in ℓ1 + ℓ2 and ℓ3 + ℓ4 respectively.

Define fℓ1 : cF(A) → ℓ1 + 1 by

fℓ1(a) =

a if a ∈ ℓ1

1 if a ∈ ℓ2

and fℓ4 : cF(B) → 1 + ℓ4 by

fl4(b) =

b if b ∈ ℓ4

1 if b ∈ ℓ3

73

Finally, define φ : cF(A + B) → ℓ1 + 1 + ℓ4 by

φ(x) =

fℓ1(cF(a)) if (∃a ∈ A)(x = cF(i(a)))

fℓ4(cF(b)) if (∃b ∈ B)(x = cF(i(b)))

.

Note that, for any x ∈ cF(A + B), if both conditions in the piecewise definition of

φ(x) hold, then fℓ1(cF(a)) = fℓ4(cF(b)) = 1, so φ is well defined.

Lemma 2.3.3. Let A,B, ℓ1, ℓ2, ℓ3, and ℓ4 be structures in the language of linear or-

ders. Suppose that cF(A) ∼= ℓ1 + ℓ2 and that cF(B) ∼= ℓ3 + ℓ4. Then, the following

diagram commutes:

A cF(A)

(A + B) cF(A + B) (ℓ1 + 1 + ℓ4)

B cF(B)

cF

i
fℓ1

cF φ

cF

i
fℓ4

.

Furthermore, cF(A + B) can be decomposed into cF(A + B) = L1 + L′ + L4 where

φ(L1) = ℓ1, φ(L4) = ℓ4 and L′ ∼= cF[(cAF)−1(ℓ2) + (cBF)−1(ℓ3)]

Proof. That the diagram commutes follows directly from the definition of φ (there

are only two loops). Let L′ = φ−1(1), L1 = φ−1(ℓ1) and L4 = φ−1(ℓ4). To see

that cF(A + B) = L1 + L′ + L4 fix x1 ∈ L1, x
′ ∈ L′ and x4 ∈ L4. We need to

show that x1 < x′ < x4. x1 < x4 because i−1(c−1
F (x1)) ⊂ A and i−1(c−1

F (x4)) ⊂ B.

x1 < x′ because cF(i−1(c−1
F (x1))) ⊂ ℓ1 ⊂ A and cF(i−1(c−1

F (x′))) ⊂ ℓ2 ∪ ℓ3. Similarly,

cF(i−1(c−1
F (x4))) ⊂ l4, so x′ < x4.

74

Because the diagram commutes,

cA+B
F [i((cAF)−1(ℓ2)) ∪ i((cBF)−1(ℓ3))] = φ−1[fℓ1(ℓ2) ∪ fℓ4(ℓ3)].

The right hand side is equal to L′. On the right hand side, we can replace the ∪ with

+ because i((cAF)−1(ℓ2) <A+B i((c
B
F)−1(ℓ3)). By the previous lemma,

cA+B
F [i((cAF)−1(ℓ2) + i((cBF)−1(ℓ3))] ∼= cF[i((cAF)−1(ℓ2)) + i((cBF)−1(ℓ3))].

Finally, i is an injection, so

cF[i((cAF)−1(ℓ2) + i((cBF)−1(ℓ3))] ∼= cF[(cAF)−1(ℓ2) + (cBF)−1(ℓ3)].

Thus, L′ ∼= cF[(cAF)−1(l2) + (cBF)−1(ℓ3)], as desired.

We combine Lemma 2.3.3 with a several theorems of Dimitrov, Harizanov, Moro-

zov, Shafer, Soskova, and Vatev.

Theorem 2.3.4 ([11]). For any linear orders A1, A2 and cohesive set C, we have

�

∏
C(A1 + A2) ∼=

∏
C A1 +

∏
C A2,

�

∏
C A∗

1
∼= (
∏

C A1)
∗, where ∗ is the reversal operator,

Proposition 2.3.5. Let A ∼= ζ be a computable linear order and C be a cohesive,

co-c.e. set. Then cF(ΠCA) ∼= η

Proof. Fix n ∈ A. Let U = {x ∈ A : x ≥A n} and L = {x ∈ A : x <A n}.

Then U ∼= ω and L ∼= ω∗. C is cohesive and co-c.e., so by theorems 4.4 and 4.5 of

75

[11], cFΠCU ∼= cFΠCL
∗ ∼= 1 + η with c−1

F (1) ∼= ω. Then, by Lemma 2.3.3 and the

operations from Theorem 2.3.4,

cF (ΠCA) ∼= η∗ + cF[(cLF)−1(1) + (cUF)−1(1)] + η

∼= η + cF[ω∗ + ω] + η

∼= η + 1 + η

∼= η.

Chapter 3

Compositional Second Order Part
of a Problem in the Weihrauch
Degrees

3.1 Introduction and the First Order Part of a

Problem

Here we give a brief and narrow introduction to Weihrauch reducibility. For a more

comprehensive view, see [14, 6].

In this chapter, we are interested in reducibility between problems.

Definition 3.1.1. A problem on Baire space is a partial multi-function P whose

domain is a subset of NN and, for each X ∈ dom(P), the value P takes on X is a

subset P (X) ⊂ NN. We call elements of dom(P) instances of P and for X ∈ dom(P),

we call each Y ∈ P (X) a solution of P for X. We often write P :⊆ NN ⇒ NN to

denote a problem. The ⊆ indicates that P is a partial on NN and the ⇒ indicate that

76

77

P is a multi-function.

Example 3.1.2. The problem RT1
2 is the problem whose instances are c : N → 2 and

whose solutions to c are an infinite Y ⊂ N such that c(i) = c(j) for all i, j ∈ Y . The

problem RT1
2 represents Ramsey’s Theorem for colorings of singletons by two colors.

In reverse mathematics, we are interested measuring when solving one problem

P is reducible to solving another problem Q. This is a measure of relative strengths

between the theorems “Every instance of Q has a solution” and “Every instance of

P has a solution”. One way of quantifying this is via Weihrauch reducibility.

Definition 3.1.3. Let P and Q be problems. Then P is Weihrauch reducible to

Q if and only if there are Turing functionals Φ and Ψ such that for each X ∈ dom(P)

we have that Φ(X) = X̂ ∈ dom(Q) and for each Ŷ ∈ Q(X̂) we have that Ψ(Ŷ , X) ∈

P (X). If so, we write P ≤W Q.

X ∈ dom(P) X̂ ∈ dom(Q)

Y ∈ P (X) Ŷ ∈ Q(X̂)

Φ

P Q

Ψ

.

The relation ≤W is a pre-partial order on the space of problems. Hence, ≤W

induces an equivalence relation ≡W that divides the space of problems into equivalence

classes that we call Weihrauch degrees.

Definition 3.1.4 (First Order Problems). P is a first order problem if each of its

solutions is a singleton set of natural numbers, e.g. {2}.

Below, whenever we write Turing functionals as part of the instances or solutions

to a problem, we think each functional as each being represented by its index as a

single natural number.

78

Definition 3.1.5 (First Order Part of a Problem [15]). Let P be a problem. The

first order part of P , denoted by 1P , is defined to be the problem whose instances

are triples ⟨f,Φ,Ψ⟩ such that f ∈ ωω and Φ and Ψ are Turing functionals such that

Φ(f) ∈ dom(P) and Ψ(f, g)(0)↓ for all g ∈ P (Φ(f)).

The 1P solutions to ⟨f,Φ,Ψ⟩ are all y with Ψ(f, g)(0) ↓= y for some g ∈ P (Φ(f)).

Dzhafarov, Solomon, and Yokoyama [15] showed that 1P is maximal among first

order problems reducible to P .

Theorem 3.1.6 ([15]). 1P = sup≤W
{Q : Q ≤W P and Q is first order.}.

It turns out that RT1
2 ≡W

1 RT1
2. However, both are computable, in the sense

that for every instance X of RT1
2, there is a Y ≤T X with Y ∈ RT1

2(X). It is also

that case that all first order problems R are computable (assuming that there is a

solution for every instance). To see this, fix X ∈ dom(R). Then, since R is first order,

R(X) ⊂ N = {{1}, {2}, . . . }. Each element of N is computable, so each element of

R(X) is computable from X.

The discussion in the previous paragraph can be summarized by saying that, for

a computable problem P ,

1P ≡W P.

We can interpret this to mean that “extracting” the first order part from computable

problems reduces them to triviality. On the other hand, non-computable problems

must have something “left over” once you extract their first order part. It is natural

to ask whether this idea of “extraction” can be well posed.

Question 3.1.7. Let P be a problem. Is there a problem Q with trivial first order

part such that P ≡W
1P ⊡ Q, with ⊡ being some kind of product on Weihrauch

79

degrees?

The parallel product × is a natural candidate for ⊡. If such a Q exists for all P

under the operation ×, then Q would be some sort of quotient of P with 1P . We now

define one of the products that we will consider.

Definition 3.1.8. Let P and Q be problems. The parallel product P × Q is the

problem whose domain is the direct product dom(P) × dom(Q) and whose solutions

to (X1, X2) are (Y1, Y2) such that Y1 ∈ (X1) and Y2 ∈ P (X2).

Quotients over the parallel product were first considered by Dzhafarov, Goh,

Hirschfeldt, Patey, and Pauly [13], who introduce a notion of a parallel quotient

between two problems.

Definition 3.1.9 (Quotient of a Problem [13]). For problems P ≥W Q, the parallel

quotient of their Weihrauch degrees is given by P/Q := sup≤W
{R : R × Q ≤W P},

when this supremum exists.

This definition suggests an upper parallel quotient.

Definition 3.1.10. For problems P ≥W Q, the upper parallel quotient of their

Weihruach degrees is given by P/uQ := inf≤W
{R : R × Q ≥ P}, when this infimum

exists.

The upper parallel quotient is an interesting notion because if P/Q ≡W P/uQ,

then the quotient is in fact a decomposition of P ≡W Q×P/Q. However, there is no

reason to expect the upper and lower quotients to always coincide, and as noted by

Dzhafarov, Goh, Hirschfeldt, Patey, and Pauly, nor is there any reason expect that

they always exist.

80

The compositional product is another candidate for ⊡. We give the definition

below.

Definition 3.1.11. Let P and Q be problems. The compositional product P ⋆ Q is

the problem whose instances are of the form (f,Θ,Γ) such that Θ(f) ∈ dom(Q) and

for each Y1 ∈ Q(Θ(f)) we have that Γ(f, Y) ∈ dom(P). Solutions to (f,Θ,Γ) are of

the form (Y1, Y2) such that Y1 ∈ Q(Θ(f)) and Y2 ∈ P (Γ(f, Y1)).

The same considerations about the parallel product apply for upper and lower

compositional quotients. Additionally, the compositional product is not commutative,

so we also have notions of left and right quotients for both the upper and lower

variations.

Definition 3.1.12. Let P ≥W Q be problems. Then, define

� the lower left compositional quotient by P ⋆−1
ℓ,ℓ Q := sup≤W

{R : Q ⋆ R ≤W P},

when this supremum exists,

� the upper left compositional quotient by P ⋆−1
u,ℓ Q := inf≤W

{R : Q ⋆ R ≥W P},

when this infimum exists,

� the lower right compositional quotient by P ⋆−1
ℓ,r Q := sup≤W

{R : R⋆Q ≤W P},

when this supremum exists,

� the upper right compositional quotient by P ⋆−1
u,rQ := inf≤W

{R : R⋆Q ≥W P},

when this infimum exists,

It turns out that P ⋆−1
u,ℓ

1P is always defined and belongs to a special class of

problems whose first order parts are relatively weak compared to the problem itself.

81

Definition 3.1.13 (Purely Oracular). Let P be a problem. We say that P is purely

oracular for

� the parallel product if, for all Q, we have that 1P × Q ≥W P implies that

Q ≥W P .

� composition form the right if, for all Q, we have that Q⋆ 1P ≥W P implies that

Q ≥W P .

� composition from the left if, for all Q, we have that 1P ⋆ Q ≥W P implies that

Q ≥W P .

P being purely oracular for an operation captures the notion that the first order

part of P cannot assist in computing P via that operation. Note that being purely

oracular for either form of composition implies being purely oracular for the parallel

product.

In this chapter, we show that P ⋆−1
u,ℓ

1P always exists and is purely oracular for

composition from the left. In fact, we will show that P ⋆−1
u,ℓR exists for any first order

R.

3.2 Compositional Second Order Part

We begin by showing that one can always find the upper left compositional quotient

by a first order problem. First, we require introduce notation that allows our solutions

to be given in a c.e. way.

Definition 3.2.1. Let Y ∈ NN. Define Y⃗ :⊆ N → N by Y⃗ (n) = Y (⟨n, t + 1⟩) where

t is least such that Y (⟨n, t⟩) ̸= 0. If Y⃗ is total, then we also think of Y⃗ as an element

82

of NN.

For a Turing functional Ψ, let Ψ̂ be the Turing functional such that

Ψ̂(Y)(⟨n, t⟩) =

0 if Ψt(Y)(n)↑

Ψ(Y)(n) if Φt(Y)(n)↓.

Theorem 3.2.2. Let P be a problem and let R be a first order problem. Then, the

upper left compositional quotient P ⋆−1
u,ℓ R always exists.

Proof. Let Q be the problem whose instances are elements X ∈ dom(P) and whose

solutions are of the form (⟨Y0, Y1, . . . ⟩, Z) for Z ∈ dom(R) such that for each y ∈ R(Z)

we have that Y⃗y ∈ P (X).

We claim that Q ≡W P ⋆−1
u,ℓ R. To prove this, first we show that P ≤W R ⋆

Q. Let X ∈ dom(P). Let Γ = π2 ◦ π2 be the Turing functional that takes the

second component of the second component of its input. Send X to the instance

(X, id,Γ) of R ⋆ Q such that for all W = (⟨Y1, Y2, . . . ⟩, Z) ∈ Q(X) we have that

Γ(X,W) = Z, an instance of R. Therefore the solutions to (X, id,Γ) are all of the

form ((⟨Y0, Y1, . . . ⟩, Z), y) such that y = R(Z) implies that Y⃗y ∈ P (X), solving our

instance of P .

Now we show that Q = inf≤W
{S : R ⋆ S ≥W P}. Suppose that R ⋆ S ≥W P

via Φ and Ψ. Our calculations follow the diagram below. Fix X ∈ dom(P). Then,

Φ(X) = (f,∆,Γ) ∈ dom(R ⋆ S) such that Γ(f, Y) = Z ∈ dom(R) for each Y ∈

S(∆(f)). Furthermore, for each Y ∈ S(∆(f)) and each y ∈ R(Z), we have that

83

Ψ(X, Y, y) ∈ P (X).

P R ⋆ S S

X (f,∆,Γ)

Y Z

V ∈ P (X) (Y, y) y

Φ

P R⋆S

S

Γ

id S

Ψ id

.

We use this reduction to construct a reduction from Q to S. Let X ∈ dom(Q) =

dom(P). We have that Φ(X) = (f,∆,Γ). Send X to ∆(f) ∈ dom(S). For Y ∈

S(∆(f)), we have that Γ(f, Y) = Z ∈ dom(R). Return (⟨Ψ̂(X, Y, 0), Ψ̂(X, Y, 1), . . . ⟩, Z) ∈

Q(X).

In particular, we can always divide P by 1P .

Corollary 3.2.3. Let P be a problem. Then there exists problem 2P = P ⋆−1
u,ℓ

1P :=

inf ≤W{R : 1P ⋆ R ≥W P}.

For the sake of being explicit, we describe the instances and solutions of an equiv-

alent formulation of 2P .

Let P be a problem. The second order part 2P of P is the problem whose instances

are all X ∈ dom(P) and whose solutions to X are all triples (⟨Y1, Y2, . . . , ⟩, Z,Ξ) such

that

� Z ∈ dom(P)

� Ξ(Z,W)(0)↓ for all W ∈ P (Z).

� For all W ∈ P (Z), if Ξ(Z,W)(0)↓ = y, then Yy ∈ P (X).

84

Because P ≥W
2P , we also have that P ≥W

1(2P), so we immediately obtain the

following corollary.

Corollary 3.2.4. Let P be a problem. Then, 2P is purely oracular for composition

from the left.

Proof. Suppose that S ⋆R ≥W
2P for some first order problem S such that 2P ≥W S.

Then we have that 1P ⋆ (S ⋆R) ≥W P . We use monotonicity and associativity of the

compositional product. Since P ≥W
2P ≥W S and 1P ⋆ S is a first order problem,

we have that 1P ≥W
1P ⋆ S. Hence, 1P ⋆R ≥W P , so by Corollary 3.2.3 we conclude

that R ≥W
2P , as desired.

Unfortunately, there is no reason to expect that P ≡W
1P ⋆ 2P , leaving us one

step away the possibility of a true decomposition in the Weihrauch degrees. Instead,

we get the following.

Theorem 3.2.5. Let P be a problem. Then, P decomposes into first order part 1P

and compositional second order part 2P such that 1P ⋆ 2P ≥W P and such that for

each R, if 1P ⋆ R ≥W P then R ≥W
2P .

This is a preliminary result in a new research direction. I conjecture that the

situation is better in the degree structure obtained by fixing instances of P . We leave

this to future work.

Additionally, theorem 3.2.2 suggests the ability to to stratify the problems Q such

that such that there exists a uniform forwards functional Φ witnessing Q ≤c P . It

remains to check whether there is a correspondence between such Q and first order

R such that Q = P ⋆−1
u,ℓ R. For fixed Q, such an R would have the property that

R = P ⋆−1
ℓ,r R. We also leave this and other consequences to the algebraic structure of

the Weihrauch degrees to future work.

Bibliography

[1] Dimitris Achlioptas and Themis Gouleakis. “Algorithmic improvements of the

Lovász Local Lemma via cluster expansion.” In: Leibniz International Proceed-

ings in Informatics, LIPIcs. Vol. 18. 2012, pp. 16–23. isbn: 9783939897477. doi:

10.4230/LIPIcs.FSTTCS.2012.16.

[2] Noga Alon. “A parallel algorithmic version of the local lemma.” In: Random

Structures & Algorithms 2 (4 Dec. 1991), pp. 367–378. issn: 10429832. doi:

10.1002/rsa.3240020403.

[3] Noga Alon, Joel Spencer, and Paul Erdős. The Probabilistic Method. John Wiley

& Sons, 1992. isbn: 0-471-53588-5.

[4] József Beck. “An algorithmic approach to the Lovász local lemma. I.” In: Ran-

dom Structures & Algorithms 2 (4 Dec. 1991), pp. 343–365. issn: 10429832.

doi: 10.1002/rsa.3240020402.

[5] József Beck. “An Application of Lovasz Local Lemma: There Exists an Infinite

01-Sequence Containing No Near Identical Intervals.” In: Finite and Infinite

Sets 37 (1984), pp. 103–107. doi: 10.1016/b978-0-444-86893-0.50011-5.

85

https://doi.org/10.4230/LIPIcs.FSTTCS.2012.16
https://doi.org/10.1002/rsa.3240020403
https://doi.org/10.1002/rsa.3240020402
https://doi.org/10.1016/b978-0-444-86893-0.50011-5

86

[6] Vasco Brattka, Guido Gherardi, and Arno Pauly. Weihrauch Complexity in

Computable Analysis. Ed. by Vasco Brattka and Peter Hertling. 2021. doi:

10.1007/978-3-030-59234-9 11. url: https://doi.org/10.1007/978-3-030-59234-

9 11.

[7] Douglas Cenzer, Valentina Harizanov, and Jeffrey Remmel. “Computability-

Theoretic Properties of Injection Structures.” In: Algebra and Logic 53 (Sept.

2014), pp. 39–69. doi: 10.1007/s10469-014-9270-0.

[8] Barbara Csima, Damir Dzhafarov, Denis Hirschfeldt, Carl Jockusch, Reed Solomon,

and Linda Westrick. “The reverse mathematics of Hindman’s Theorem for sums

of exactly two elements.” In: Computability 8 (3-4 2019), pp. 253–263. issn:

22113576. doi: 10.3233/COM-180094.

[9] Artur Czumaj and Christian Scheideler. “Coloring Nonuniform Hypergraphs: A

New Algorithmic Approach to the General Lovász Local Lemma.” In: Random

Structures & Algorithms 17 (3-4 2000), pp. 213–237. doi: https://dl.acm.org/

doi/10.5555/360708.360729.

[10] Rumen Dimitrov. “Cohesive Powers of Computable Structures.” In: Godishnik

na Sofiskiya Universitet ”Sv. Kliment Ohridski”. Fakultet po Matematika i In-

formatika. Annuaire de l’Universite de So a ”St. Kliment Ohridski”. Faculte de

Mathematiques et Informatique 99 (2009), pp. 193–201.

[11] Rumen Dimitrov, Valentina Harizanov, Andrey Morozov, Paul Shafer, Alexan-

dra Soskova, and Stefan Vatev. “Cohesive Powers of Linear Orders.” In: Com-

puting with Foresight and Industry. Ed. by Florin Manea, Barnaby Martin,

Daniël Paulusma, and Giuseppe Primiero. Springer International Publishing,

2019, pp. 168–180. isbn: 978-3-030-22996-2.

https://doi.org/10.1007/978-3-030-59234-9_11
https://doi.org/10.1007/978-3-030-59234-9_11
https://doi.org/10.1007/978-3-030-59234-9_11
https://doi.org/10.1007/s10469-014-9270-0
https://doi.org/10.3233/COM-180094
https://doi.org/https://dl.acm.org/doi/10.5555/360708.360729
https://doi.org/https://dl.acm.org/doi/10.5555/360708.360729

87

[12] Rumen Dimitrov, Valentina Harizanov, Andrey Morozov, Paul Shafer, Alexan-

dra A Soskova, and Stefan V Vatev. On cohesive powers of linear orders. 2022.

doi: 10.48550/ARXIV.2009.00340. url: https://arxiv.org/abs/2009.00340.

[13] Damir Dzhafarov, Jun Le Goh, Denis Hirschfeldt, Ludovic Patey, and Arno

Pauly. “Ramsey’s theorem and products in the Weihrauch degrees.” In: Com-

putability 9 (2020), pp. 85–110. issn: 2211-3576. doi: 10.3233/COM-180203.

[14] Damir Dzhafarov and Carl Mummert. Reverse Mathematics. Springer Inter-

national Publishing, 2022. isbn: 978-3-031-11366-6. doi: 10.1007/978-3-031-

11367-3.

[15] Damir D Dzhafarov, Reed Solomon, and Keita Yokoyama. “On the First-Order

Parts of Problems in the Weihrauch Degrees.” In: (2023).

[16] P. Erdős and L. Lovász. “Problems and results on 3-chromatic hypergraphs and

some related questions.” In: Infinite and finite sets 2 (2 1975), pp. 609–627.

[17] Nicholas J.A. Harvey and Jan Vondrak. “An Algorithmic Proof of the Lovasz

Local Lemma via Resampling oracles.” In: SIAM Journal on Computing 49 (2

2020), pp. 394–428. issn: 10957111. doi: 10.1137/18M1167176.

[18] Kun He, Qian Li, and Xiaoming Sun. “Moser–Tardos Algorithm: Beyond Shearer’s

Bound.” In: Proceedings (Jan. 2023), pp. 3362–3387. doi: 10.1137/1.9781611977554.

CH129. url: https://epubs.siam.org/doi/10.1137/1.9781611977554.ch129.

[19] Dennis Hirschfeldt and Sarah Reitzes. “Thin Set Versions of Hindman’s Theo-

rem.” In: Notre Dame Journal of Formal Logic (to appear).

https://doi.org/10.48550/ARXIV.2009.00340
https://arxiv.org/abs/2009.00340
https://doi.org/10.3233/COM-180203
https://doi.org/10.1007/978-3-031-11367-3
https://doi.org/10.1007/978-3-031-11367-3
https://doi.org/10.1137/18M1167176
https://doi.org/10.1137/1.9781611977554.CH129
https://doi.org/10.1137/1.9781611977554.CH129
https://epubs.siam.org/doi/10.1137/1.9781611977554.ch129

88

[20] Kashyap Kolipaka, Babu Rao, and Mario Szegedy. “Moser and Tardos Meet

Lovász.” In: Proceedings of the Forty-Third Annual ACM Symposium on Theory

of Computing. Association for Computing Machinery, 2011, pp. 235–244. isbn:

9781450306911. doi: 10.1145/1993636.1993669. url: https://doi.org/10.1145/

1993636.1993669.

[21] Kashyap Kolipaka, Mario Szegedy, and Yixin Xu. “A Sharper Local Lemma

with Improved Applications.” In: Approximation, Randomization, and Combi-

natorial Optimization. Algorithms and Techniques. Ed. by Klaus, Rolim José,

Servedio Rocco Gupta Anupam, and Jansen. Springer Berlin Heidelberg, 2012,

pp. 603–614. isbn: 978-3-642-32512-0.

[22] Lu Liu, Benoit Monin, and Ludovic Patey. “A computable analysis of variable

words theorems.” In: Proceedings of the American Mathematical Society 147 (2

2018), pp. 823–834. issn: 0002-9939. doi: 10.1090/proc/14269.

[23] Michael Molloy and Bruce Reed. “Further algorithmic aspects of the local

lemma.” In: Proceedings of the thirtieth annual ACM symposium on Theory

of computing - STOC ’98. ACM Press, 1998, pp. 524–529. isbn: 0897919629.

doi: 10.1145/276698.276866.

[24] Robin A. Moser and Gábor Tardos. “A Constructive Proof of the General

Lovász Local Lemma.” In: Journal of the ACM 57 (2 2010), pp. 1–12. issn:

00045411. doi: 10.1145/1667053.1667060.

[25] Wesley Pegden. “An Extension of the Moser-Tardos Algorithmic Local Lemma.”

In: SIAM Journal on Discrete Mathematics 28 (2 2014), pp. 911–917. issn:

08954801. doi: 10.1137/110828290.

https://doi.org/10.1145/1993636.1993669
https://doi.org/10.1145/1993636.1993669
https://doi.org/10.1145/1993636.1993669
https://doi.org/10.1090/proc/14269
https://doi.org/10.1145/276698.276866
https://doi.org/10.1145/1667053.1667060
https://doi.org/10.1137/110828290

89

[26] Wesley Pegden. “Highly nonrepetitive sequences: Winning strategies from the

local lemma.” In: Random Structures & Algorithms 38 (1-2 2011), pp. 140–161.

doi: https://doi.org/10.1002/rsa.20354. url: https://onlinelibrary.wiley.com/

doi/abs/10.1002/rsa.20354.

[27] Andrei Rumyantsev and Alexander Shen. “Probabilistic constructions of com-

putable objects and a computable version of Lovász local lemma.” In: Funda-

menta Informaticae 132 (1 May 2014), pp. 1–14. issn: 01692968. doi: 10.3233/

FI-2014-1029. url: http://arxiv.org/abs/1305.1535.

[28] Aravind Srinivasan. “Improved Algorithmic Versions of the Lovász Local Lemma.”

In: Proceedings of the nineteenth annual ACM –SIAM symposium on Discrete

algorithms (Jan. 2008), pp. 611–620.

https://doi.org/https://doi.org/10.1002/rsa.20354
https://onlinelibrary.wiley.com/doi/abs/10.1002/rsa.20354
https://onlinelibrary.wiley.com/doi/abs/10.1002/rsa.20354
https://doi.org/10.3233/FI-2014-1029
https://doi.org/10.3233/FI-2014-1029
http://arxiv.org/abs/1305.1535

	Lefthanded Computable Lovász Local Lemma
	Introduction
	Non-repetitive Sequences and the Local Lemma
	The Constructive Local Lemma
	The Infinite Case
	Probabilistic Turing Machines
	Computable Local Lemma
	The Lefthanded Local Lemma
	The Computable Lefthanded Local Lemma
	Logs and Moser Trees
	The T-check
	Bounding the Probability that the T-check Passes

	Computable Lefthanded Local Lemma
	Applying the Computable Lefthanded Local Lemma

	Binary Sequence Games
	Conclusion

	Cohesive Powers
	Introduction
	Some Classifications of Cohesive Powers
	Equivalence Structures
	Injection Structures

	Finite Condensation of Cohesive Powers of

	Compositional Second Order Part of a Problem in the Weihrauch Degrees
	Introduction and the First Order Part of a Problem
	Compositional Second Order Part

	Bibliography

