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Corny Joke

A mathematician �nds that a �re has broken out in their o�ce. They

ask them-self,

\How can I put out this �re?"

Then, they remember that they have a �re blanket locked in their desk

drawer.

\Putting out the �re reduces to getting the blanket from the drawer!"
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Question

What does it mean for problem Q to be reducible to problem P?

Answer (Naive I)

Q is reducible to P if it is easy to prove Q using P .

\Suppose that I could get the �re blanket out of the drawer. Then I

could put out the �re!"

Answer (Naive II)

Q is reducible to P if we know how to use a solution to P to get a

solution to Q.

\If I had a way to get the �re blanket out of the desk, then I could use it

to put out the �re!"

These answers seem similar because the they are almost equivalent for

statements whose proof consists of �nding a witness.
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The mathematician has successfully picks the lock and uses the �re

blanket to put out the �re. They leave the �re blanket on the oor and

go home.

The next day, another �re breaks out. Once again, they ask them-self

\How can I put out this �re?"
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Punchline!

They pick up the �re blanket and lock it back into their desk.

\I have reduced the problem into one I have already solved!"

Satis�ed that they have solved the problem, they go home.

Answer (Naive III)

Q is reducible to P if we can transform Q into P and then use the

solution of P to get a solution of Q.

Problem P Solution of P

Problem Q Solution of Q
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Problems

We will formalize this notions for a speci�c class of problems.

Idea

Instead of thinking about problems that are solved once and done with,

we collect classes of similar problems into a set of instances. Each

instance has its own set of solutions.

Many theorems can be stated as the existence of a solution to each

instance of such a problem.

Theorem (Heine-Borel [ HB ])

Each open cover of [0; 1] � R has a �nite subcover.

Instances are open covers fUigi2I of [0; 1].

Solutions of fUigi2I are fijgj<k2N such that fUnjgj<k covers [0; 1].
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More Examples of Problems

Theorem (CRhPI)

Every commutative ring has a prime ideal

Instances are commutative rings R.

Solutions of R are prime ideals of R.

Theorem (Weak K�onig's Lemma [WKL ])

Each in�nite binary tree has an in�nite path.

Instances are in�nite binary trees T .

Solutions of T are paths through T .
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Formal Reducibilities

Question

What does it mean for problem Q to be reducible to problem P?

Answer (Reverse Math)

Q is reducible to P if P can be used to prove Q over some weaker

system of axioms.
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Reducibility For Problems

Question

What does it mean for problem Q to be reducible to problem P?

Answer (Computable Combinatorics)

Q is reducible to P if, from each instance X of Q, we can compute an

instance Z of P such that we can use solutions of Z to compute

solutions of X.

Z 2 Instances of P Solutions of Z for P

X 2 Instances of Q Solutions of X for Q

P

computecompute

Both answers, along with the connections between them, yield rich

mathematics. For today, we will focus on the computable combinatorics

answer.
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Computability
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Computability (Informal)

De�nition

We say that a function f : N! N is computable if there is an algorithm

that takes x as an input and returns f (x) as an output.

De�nition

We say that X � N is computable if there is an algorithm that computes

its characteristic function

1X(n) =

{
1 if n 2 X

0 if n 62 X
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Computability (Informal)

Consider the bijection h�; �i : N2 ! N

hx; yi =
(x + y)(x + y + 1)

2
+ y :

We can code arbitrary tuples (x1; x2; :::; xn) by the bijective function

p�q : fordered tuplesg ! N

p(x1; x2; :::; xn)q = hn; hx1; hx2; hx3; : : : ; hxn�1; hxn�1; xnii : : : iiii:

Example

Consider the projection function f (p(x1; x2; x3; :::; xn)q) = x1. Then, f is

computable by the following algorithm: �rst, �nd a and b such that

ha; bi = p(x1; x2; x3; :::; xn)q. Then, �nd a0 and b0 such that ha0; b0i = b.

By de�nition of p(x1; x2; ::; xn)q we have that a0 = x1.
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Partial Functions

Depending on starting parameters, some algorithms enter in�nite loops

and never produce an output. We model this behavior using partial

functions.

A partial function f : N! N is a classical function f : N! N [ f"g.

If f (x) =", we say that f (x) diverges and write f (x) ".

If f (x) = n 2 N, we say that f (x) converges and write f (x) # as

well as f (x) #= n.

A partial function f : N! N is total if f (x) # for all x 2 N.

Example

Let f (n) = p(p1; p2)q where p1 and p2 are the n'th pair of twin primes.

The twin prime conjecture can then be rephrased as \f is a total

function".
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Computability (Formal)

The set of partial computable functions from N to N is the set of partial

functions built up from

the constant functions Cn(x) = n for all x

the successor function S(x) = x + 1

and the following operations given partial computable functions g; h:

Composition: f (x) = g(h(x))

Primitive recursion: A for-loop for f whose initial value is

determined by g and whose iterative step is determined by h.

�-recursion: f (x) = �x:(g(x) = 0) is a while loop that returns the

least x such that g(x) = 0 and g(y) #6= 0 for each y < x .

De�nition

The set of computable functions is the subset of partial computable

functions that are also total. X � N is computable if 1X is computable.
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Computability Examples

Example

f (p(x; y)q) = xy is computable.

Theorem (Church-Turing Thesis)

Any function you could code on a computer is partial computable

By encoding the recursive de�nition of each partial computable function

into a number, we can enumerate them by '1; '2; '3; : : : .
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Primitive Recursive Functions

Partial computable functions that have no �-recursion in their de�nition

are always total.

De�nition

The primitive recursive functions is the subset of the partial computable

functions that can be de�ned without �-recursion.

By encoding the recursive de�nition of each primitive recursive

function into a number, we can enumerate them by f1; f2; f3; : : : .

This gives us an computable list of algorithms that we know are

total.
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A Set That is Not Computable

By encoding the recursive de�nition of each primitive recursive

function into a number, we can enumerate them by f1; f2; f3; : : : .

Then,

K = fe : �x:(fe(x) = 0) #g = fe : 0 2 range(fe)g

is not computable. There is no algorithmic way to con�rm that

there does not exist an x such that fe(x) = 0.

Example

The function

f (x) =

{
1 if 2x = p1 + p2 for some prime p1; p2 < x

0 otherwise

is primitive recursive, but knowing whether or not �x:(f (x) = 0)

converges is very di�cult.
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Relative Computability

To state our notion of reducibility, we need a notion of what it means to

use a solution of an instance of P to compute another.

De�nition

Fix a set X � N. The partial computable functions relative to X is the

set of partial functions built up from

The successor and constant functions

1X

and closed under

Composition

Primitive recursion (for loops)

�-recursion (while loops)

We say that Y � N is computable from X � N if the characteristic

function of Y is X-total computable. We write Y �T X. Note that we

can code sets fXigi2N into one set
⊕

Xi = fp(i ; x)q : x 2 Xig.
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Turing Functionals

Consider the recursive de�nition of a partial X-computable function f .

By replacing all instances of 1X with 1Y , we can use the same recursive

de�nition to de�ne partial Y -computable function g. By encoding the

recursion, this gives us a list of functionals

�1;�2;�3; :::

where, for each Y � N, �Y
e is the e'th partial Y -computable function.

Example

Let �X(n) be the sum of the n least non-zero elements of X. Then,

�2N(2) = 2 + 4 = 6

�3N(2) = 3 + 6 = 9

�f1;5;7g(2) = 6 and

�f1;5;7g(17) ".
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Computable Reducibility and Weihrauch Reducibility
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Computable Reducibility

Answer (Computable Combinatorics)

Q is reducible to P if, from each instance X of Q, we can compute an

instance Z of P such that we can use solutions of Z to compute

solutions of X.

De�nition

Q is computably reducible to P if, for each instance X of Q, there is an

X-computable instance X̂ of P such that for any solution Ŷ of X̂, X � Ŷ

computes a solution to X. We write Q �c P .

X̂ 2 Instances of P Ŷ 2 Solutions of X̂ for P

X 2 Instances of Q Solutions of X for Q
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Computable Reducibility

De�nition

Q is computably reducible to P if, for each instance X of Q, there is an

X-computable instance X̂ of P such that for any solution Ŷ of X̂, X � Ŷ

computes a solution to X. We write Q �c P .

De�nition

Q is strongly computably reducible to P if, for each instance X of Q,

there is an X-computable instance X̂ of P such that any solution Ŷ of X̂

computes a solution to X. We write Q �sc P .
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Transitivity

Theorem

Both forms of computable reductions are transitive: If Q �c R and

R �c P then Q �c P .

Proof: In the following diagram:

Instance of P Solutions of P

Instances of R Solutions of R

Instances of Q Solutions of Q
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A Strong Computable Reduction

First, we de�ne id, the identity problem. Every X � N is an instance of

id and the solution of X is X itself.

id is computably reducible (but not strongly computably reducible)

to every problem with a computable instance.

If P �sc id then every instance X of P has an X-computable

solution. In this case, we say that P is computable.

Theorem

HB �sc id: The Heine-Borel theorem is strongly computably reducible to

the identity problem. In other words, from an open cover fUngn2N of

[0; 1], we can compute k such that [0; 1] �
⋃k

n=1 Un.

Proof: Finite sets are computable, so fkg is computable for every k .
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A Uniform Strong Computable Reduction

Theorem

HB �sc id: The Heine-Borel theorem is strongly computably reducible to

the identity problem. In other words, from an open cover fUngn2N of

[0; 1], we can compute k such that [0; 1] �
⋃k

n=1 Un.

Uniform Proof:

Enumerate the basic open sets as (a1; b1); (a2; b2); ::: where

ai ; bi 2 Q.

We code open sets U as the set of indices U = fi : (ai ; bi) � Ug

We code an open cover U = fUngn2N by U =
⊕

Ui .
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Uniform proof (Cont)

Let

Us =

i < s : (ai ; bi) �

s⋃
j=1

Uj

 :

Let k be the least s

[0; 1] �
⋃
i2Us

(ai ; bi);

The existence of k is guaranteed because the Heine-Borel theorem is

true.

To algorithmically �nd k using oracle U = f(n; i) : (ai ; bi) � Ung,

compute the �nite sets Us and check if they cover the unit interval until

you �nd one that does.
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Pigeonhole Principle

Theorem (In�nite Pigeonhole Principle [ RT1
k ])

For each k-coloring c : N! f0; 1; :::; k � 1g there is an in�nite X � N

such that c restricted to X is constant.

This is a special case of in�nite Ramsey's Theorem, hence the

notation RT1
k .

Note that we are splitting up the problem for di�erent values of k .
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Theorem

RT1
2 �sc id: The in�nite pigeonhole principal is computable.

Proof:

Let c : N! f0; 1g be a 2-coloring of the natural numbers.

Then, the characteristic functions of X = fx : c(x) = 0g and

Y = fx : c(x) = 1g are both computable when using c as an oracle.

Because RT1
2 is true, we have that either X is a solution of c or Y is

a solution of c .

Since both X and Y are computable from c , c has a c-computable

solution.

This proof is non uniform. However, there is no uniform version.
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Theorem

There is no Turing Functional � such that, for each c : N! f0; 1g,

�c(x) is total and the characteristic function of an in�nite X � N on

which c is constant

Suppose there were such a �. Enumerate the primitive recursive

functions by f1; f2; : : : . The existence of � implies that we can compute

�x:(fe(x) = 0) for each e, which is impossible. To see this,

De�ne total computable ce by

ce(x) =

{
0 if there exists y � x such that fe(x) = 0

1 otherwise
:

Emulate �ce (x) by performing all the same steps, except that when

�ce asks whether ce(x) = i , compute ce(x) to �nd the result. Call

this algorithm '(e; x).

To determine if �x:(fe(x) = 0) halts, �nd x such that '(e; x) = 0,

then compute ce(x).
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Weihrauch Reducibility

We formalize this notion of uniformly computable reducible.

De�nition

Q is Weihrauch reducible to P if there exist oracle-algorithms � and 	

such that for each instance X of Q, �X is an instance of P such that for

any solution Ŷ of �X , 	Ŷ�X is a solution o� Q. We write Q �W P .

X̂ 2 Instances of P Solutions of X̂ for P

X 2 Instances of Q Solutions of X for Q

	�

We write Q �sW P if such a � and 	 exist where 	 is not allowed to

use X.
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Examples

Theorem

RT1
2 6�W id.

Theorem

HB �sW id.

Theorem

RT1
k �sW RT1

k 0 for k � k 0. The reverse direction does not hold.

Theorem (Simpson, 2009)

CRhPI �sW WKL
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Proof of CRhPI �sW WKL

De�nition

I is a prime ideal of ring (R;+; �) if

(I;+) is a proper subgroup of (R;+)

For each r 2 R; x 2 I, r � x 2 I

For all r; q 2 R, if r � q 2 I then either r 2 I or q 2 I.

De�nition

f : N! f0; 1g is a path through binary tree T � f�nite binary stringsg if

f jn 2 T for each n 2 N.

Strategy: suppose we are given functions +R : N2 ! N and �R : N2 ! N

that de�ne a commutative ring on R = N with additive identity 0 and

multiplicative identity 1. We have �+R��R construct a tree T of �nite

binary strings such that f is a path through T if and only if f is the

characteristic function of a prime ideal of R.
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Proof of CRhPI �sW WKL (cont.)

Let � 2 T if and only if j�j � 2 or, for all i ; j; k < j�j,

�(0) = 1

�(1) = 0

If �(i) = �(j) = 1 and i +R j = k then �(k) = 1

If �(i) = 1 and i �R j = k then �(k) = 1

If �(i) = �(j) = 0 and i �R j = ak then �(k) = 0.

T is a tree because these conditions are preserved by initial segment. T

is in�nite because R has a prime ideal. Thus, WKL gives us a path that

is also an ideal (	Ŷ = Ŷ ).
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Operations on Problems
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What if we want to allow multiple uses of a problem?

Theorem (Informal)

RT1
4 is reducible to two uses of RT1

2.

Proof: Given c : N! f0; 1; 2; 3g, de�ne c1 : N! f0; 1g by

c1(x) =

{
0 if c(x) = 0 or c(x) = 1

1 if c(x) = 2 or c(x) = 3
:

Apply RT1
2 again to get an in�nite X such that c1 is constant on X.

Then, c is two-valued on X, either taking values in f0; 1g or f2; 3g. Let

g be an increasing bijection from N to X. Let

c2(x) = c(g(x)) mod 2:

Apply RT1
2 to c2 to get Y such that c is constant on Y . Then, g(Y ) is

computable from X and c is constant on g(Y ).
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Compositional Product

The previous theorem was a proof that RT1
4 �sW RT1

2 ?RT
1
2, where ?

denotes the compositional product. Below, we give a precise de�nition of

?.

De�nition

Suppose all solutions to every instance of P are also instances of Q.

Then, we can de�ne P �Q, whose instances are instances of P .

(P �Q)-Solutions of X are all Q-solutions of any P -solution of X.

De�nition (Brattka, Gherardi, and Marcone, 2012)

R �W P ? Q if and only if there are P 0 �W P and Q0 �W Q such that

R �W P 0 �Q0.

Note that P ? Q is not a problem, but a degree.
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Write X � Y as hX; Y i.

We showed that RT1
4 �sW P �Q for P;Q �sW RT1

2 de�ned by

Instances of P are pairs hc; c1i such that c : N! f0; 1; 2; 3g and

c1 : N! f0; 1g.

P -solutions of hc; c1i are hc2; Xi such that c2(x) = c(x) mod 2

and c1 is constant on X.

Instances of Q are hc2; Xi such that c2 : N! f0; 1g and X is any

subset of N.

Q-solutions of c2 �X are hY;Xi such that c2 is constant on Y .

hc; c1i hc2; Xi hY;Xi

c g(Y )

P Q

	Y�X
�c
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Outlook

Daniel Mourad (UCONN) Quantifying Reducibility April 22, 2022 39 / 45



Theorem (Brattka and Pauly, 2018)

P ? Q is a well de�ned �W -degree. In other words, for each P and Q,

there exists a problem R such that for each S and T , S �W R �W T if

and only if S �W P ? Q �W T .

There are many connections between reverse math and this account of

reducibility. In the following example, let P ?n be the the ?-product of n

copies of P .

Theorem (Dzhafarov, Hirschfeldt, and Reitzes, 2020)

Let � consist of RCA0 together with all �1
1 formulas true over N and

suppose that P has computable instances. If Q 6�W P ?n for all n, then

� 6` P ! Q
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Primitive Recursion

Primitive recursion: A for-loop for f whose initial value is g and whose

iterative step is h. f (p()q) = f (p(x)q) = f (p(x; y)q) = 0 for all x and y ,

and

f (p(k; 0; x1; :::; xk)q) = g(p(x1; :::; xk)q)

and

f (p(k; S(y); x1; :::; xk)q) = h(p(y ; f (p(k; y ; x1; :::; xk)q); x1; :::; xk)q)
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