
Quantifying Degrees of Relative Solvability:

When Does One Problem Reduce to Another?

Daniel Mourad

University of Connecticut

Daniel.Mourad@Uconn.edu

April 22, 2022

Daniel Mourad (UCONN) Quantifying Reducibility April 22, 2022 1 / 45

Introduction

Daniel Mourad (UCONN) Quantifying Reducibility April 22, 2022 2 / 45

Corny Joke

A mathematician �nds that a �re has broken out in their o�ce. They

ask them-self,

\How can I put out this �re?"

Then, they remember that they have a �re blanket locked in their desk

drawer.

\Putting out the �re reduces to getting the blanket from the drawer!"

Daniel Mourad (UCONN) Quantifying Reducibility April 22, 2022 3 / 45

Question

What does it mean for problem Q to be reducible to problem P?

Answer (Naive I)

Q is reducible to P if it is easy to prove Q using P .

\Suppose that I could get the �re blanket out of the drawer. Then I

could put out the �re!"

Answer (Naive II)

Q is reducible to P if we know how to use a solution to P to get a

solution to Q.

\If I had a way to get the �re blanket out of the desk, then I could use it

to put out the �re!"

These answers seem similar because the they are almost equivalent for

statements whose proof consists of �nding a witness.

Daniel Mourad (UCONN) Quantifying Reducibility April 22, 2022 4 / 45

The mathematician has successfully picks the lock and uses the �re

blanket to put out the �re. They leave the �re blanket on the oor and

go home.

The next day, another �re breaks out. Once again, they ask them-self

\How can I put out this �re?"

Daniel Mourad (UCONN) Quantifying Reducibility April 22, 2022 5 / 45

Punchline!

They pick up the �re blanket and lock it back into their desk.

\I have reduced the problem into one I have already solved!"

Satis�ed that they have solved the problem, they go home.

Answer (Naive III)

Q is reducible to P if we can transform Q into P and then use the

solution of P to get a solution of Q.

Problem P Solution of P

Problem Q Solution of Q

Daniel Mourad (UCONN) Quantifying Reducibility April 22, 2022 6 / 45

Punchline!

They pick up the �re blanket and lock it back into their desk.

\I have reduced the problem into one I have already solved!"

Satis�ed that they have solved the problem, they go home.

Answer (Naive III)

Q is reducible to P if we can transform Q into P and then use the

solution of P to get a solution of Q.

Problem P Solution of P

Problem Q Solution of Q

Daniel Mourad (UCONN) Quantifying Reducibility April 22, 2022 6 / 45

Problems

We will formalize this notions for a speci�c class of problems.

Idea

Instead of thinking about problems that are solved once and done with,

we collect classes of similar problems into a set of instances. Each

instance has its own set of solutions.

Many theorems can be stated as the existence of a solution to each

instance of such a problem.

Theorem (Heine-Borel [HB])

Each open cover of [0; 1] � R has a �nite subcover.

Instances are open covers fUigi2I of [0; 1].

Solutions of fUigi2I are fijgj<k2N such that fUnjgj<k covers [0; 1].

Daniel Mourad (UCONN) Quantifying Reducibility April 22, 2022 7 / 45

More Examples of Problems

Theorem (CRhPI)

Every commutative ring has a prime ideal

Instances are commutative rings R.

Solutions of R are prime ideals of R.

Theorem (Weak K�onig's Lemma [WKL])

Each in�nite binary tree has an in�nite path.

Instances are in�nite binary trees T .

Solutions of T are paths through T .

Daniel Mourad (UCONN) Quantifying Reducibility April 22, 2022 8 / 45

Formal Reducibilities

Question

What does it mean for problem Q to be reducible to problem P?

Answer (Reverse Math)

Q is reducible to P if P can be used to prove Q over some weaker

system of axioms.

Daniel Mourad (UCONN) Quantifying Reducibility April 22, 2022 9 / 45

Reducibility For Problems

Question

What does it mean for problem Q to be reducible to problem P?

Answer (Computable Combinatorics)

Q is reducible to P if, from each instance X of Q, we can compute an

instance Z of P such that we can use solutions of Z to compute

solutions of X.

Z 2 Instances of P Solutions of Z for P

X 2 Instances of Q Solutions of X for Q

P

computecompute

Both answers, along with the connections between them, yield rich

mathematics. For today, we will focus on the computable combinatorics

answer.
Daniel Mourad (UCONN) Quantifying Reducibility April 22, 2022 10 / 45

Computability

Daniel Mourad (UCONN) Quantifying Reducibility April 22, 2022 11 / 45

Computability (Informal)

De�nition

We say that a function f : N! N is computable if there is an algorithm

that takes x as an input and returns f (x) as an output.

De�nition

We say that X � N is computable if there is an algorithm that computes

its characteristic function

1X(n) =

{
1 if n 2 X

0 if n 62 X

Daniel Mourad (UCONN) Quantifying Reducibility April 22, 2022 12 / 45

Computability (Informal)

Consider the bijection h�; �i : N2 ! N

hx; yi =
(x + y)(x + y + 1)

2
+ y :

We can code arbitrary tuples (x1; x2; :::; xn) by the bijective function

p�q : fordered tuplesg ! N

p(x1; x2; :::; xn)q = hn; hx1; hx2; hx3; : : : ; hxn�1; hxn�1; xnii : : : iiii:

Example

Consider the projection function f (p(x1; x2; x3; :::; xn)q) = x1. Then, f is

computable by the following algorithm: �rst, �nd a and b such that

ha; bi = p(x1; x2; x3; :::; xn)q. Then, �nd a0 and b0 such that ha0; b0i = b.

By de�nition of p(x1; x2; ::; xn)q we have that a0 = x1.

Daniel Mourad (UCONN) Quantifying Reducibility April 22, 2022 13 / 45

Partial Functions

Depending on starting parameters, some algorithms enter in�nite loops

and never produce an output. We model this behavior using partial

functions.

A partial function f : N! N is a classical function f : N! N [f"g.

If f (x) =", we say that f (x) diverges and write f (x) ".

If f (x) = n 2 N, we say that f (x) converges and write f (x) # as

well as f (x) #= n.

A partial function f : N! N is total if f (x) # for all x 2 N.

Example

Let f (n) = p(p1; p2)q where p1 and p2 are the n'th pair of twin primes.

The twin prime conjecture can then be rephrased as \f is a total

function".

Daniel Mourad (UCONN) Quantifying Reducibility April 22, 2022 14 / 45

Computability (Formal)

The set of partial computable functions from N to N is the set of partial

functions built up from

the constant functions Cn(x) = n for all x

the successor function S(x) = x + 1

and the following operations given partial computable functions g; h:

Composition: f (x) = g(h(x))

Primitive recursion: A for-loop for f whose initial value is

determined by g and whose iterative step is determined by h.

�-recursion: f (x) = �x:(g(x) = 0) is a while loop that returns the

least x such that g(x) = 0 and g(y) #6= 0 for each y < x .

De�nition

The set of computable functions is the subset of partial computable

functions that are also total. X � N is computable if 1X is computable.

Daniel Mourad (UCONN) Quantifying Reducibility April 22, 2022 15 / 45

Computability Examples

Example

f (p(x; y)q) = xy is computable.

Theorem (Church-Turing Thesis)

Any function you could code on a computer is partial computable

By encoding the recursive de�nition of each partial computable function

into a number, we can enumerate them by '1; '2; '3; : : : .

Daniel Mourad (UCONN) Quantifying Reducibility April 22, 2022 16 / 45

Primitive Recursive Functions

Partial computable functions that have no �-recursion in their de�nition

are always total.

De�nition

The primitive recursive functions is the subset of the partial computable

functions that can be de�ned without �-recursion.

By encoding the recursive de�nition of each primitive recursive

function into a number, we can enumerate them by f1; f2; f3; : : : .

This gives us an computable list of algorithms that we know are

total.

Daniel Mourad (UCONN) Quantifying Reducibility April 22, 2022 17 / 45

A Set That is Not Computable

By encoding the recursive de�nition of each primitive recursive

function into a number, we can enumerate them by f1; f2; f3; : : : .

Then,

K = fe : �x:(fe(x) = 0) #g = fe : 0 2 range(fe)g

is not computable. There is no algorithmic way to con�rm that

there does not exist an x such that fe(x) = 0.

Example

The function

f (x) =

{
1 if 2x = p1 + p2 for some prime p1; p2 < x

0 otherwise

is primitive recursive, but knowing whether or not �x:(f (x) = 0)

converges is very di�cult.

Daniel Mourad (UCONN) Quantifying Reducibility April 22, 2022 18 / 45

Relative Computability

To state our notion of reducibility, we need a notion of what it means to

use a solution of an instance of P to compute another.

De�nition

Fix a set X � N. The partial computable functions relative to X is the

set of partial functions built up from

The successor and constant functions

1X

and closed under

Composition

Primitive recursion (for loops)

�-recursion (while loops)

We say that Y � N is computable from X � N if the characteristic

function of Y is X-total computable. We write Y �T X. Note that we

can code sets fXigi2N into one set
⊕

Xi = fp(i ; x)q : x 2 Xig.

Daniel Mourad (UCONN) Quantifying Reducibility April 22, 2022 19 / 45

Turing Functionals

Consider the recursive de�nition of a partial X-computable function f .

By replacing all instances of 1X with 1Y , we can use the same recursive

de�nition to de�ne partial Y -computable function g. By encoding the

recursion, this gives us a list of functionals

�1;�2;�3; :::

where, for each Y � N, �Y
e is the e'th partial Y -computable function.

Example

Let �X(n) be the sum of the n least non-zero elements of X. Then,

�2N(2) = 2 + 4 = 6

�3N(2) = 3 + 6 = 9

�f1;5;7g(2) = 6 and

�f1;5;7g(17) ".

Daniel Mourad (UCONN) Quantifying Reducibility April 22, 2022 20 / 45

Computable Reducibility and Weihrauch Reducibility

Daniel Mourad (UCONN) Quantifying Reducibility April 22, 2022 21 / 45

Computable Reducibility

Answer (Computable Combinatorics)

Q is reducible to P if, from each instance X of Q, we can compute an

instance Z of P such that we can use solutions of Z to compute

solutions of X.

De�nition

Q is computably reducible to P if, for each instance X of Q, there is an

X-computable instance X̂ of P such that for any solution Ŷ of X̂, X � Ŷ

computes a solution to X. We write Q �c P .

X̂ 2 Instances of P Ŷ 2 Solutions of X̂ for P

X 2 Instances of Q Solutions of X for Q

Daniel Mourad (UCONN) Quantifying Reducibility April 22, 2022 22 / 45

Computable Reducibility

De�nition

Q is computably reducible to P if, for each instance X of Q, there is an

X-computable instance X̂ of P such that for any solution Ŷ of X̂, X � Ŷ

computes a solution to X. We write Q �c P .

De�nition

Q is strongly computably reducible to P if, for each instance X of Q,

there is an X-computable instance X̂ of P such that any solution Ŷ of X̂

computes a solution to X. We write Q �sc P .

Daniel Mourad (UCONN) Quantifying Reducibility April 22, 2022 23 / 45

Transitivity

Theorem

Both forms of computable reductions are transitive: If Q �c R and

R �c P then Q �c P .

Proof: In the following diagram:

Instance of P Solutions of P

Instances of R Solutions of R

Instances of Q Solutions of Q

Daniel Mourad (UCONN) Quantifying Reducibility April 22, 2022 24 / 45

A Strong Computable Reduction

First, we de�ne id, the identity problem. Every X � N is an instance of

id and the solution of X is X itself.

id is computably reducible (but not strongly computably reducible)

to every problem with a computable instance.

If P �sc id then every instance X of P has an X-computable

solution. In this case, we say that P is computable.

Theorem

HB �sc id: The Heine-Borel theorem is strongly computably reducible to

the identity problem. In other words, from an open cover fUngn2N of

[0; 1], we can compute k such that [0; 1] �
⋃k

n=1 Un.

Proof: Finite sets are computable, so fkg is computable for every k .

Daniel Mourad (UCONN) Quantifying Reducibility April 22, 2022 25 / 45

A Uniform Strong Computable Reduction

Theorem

HB �sc id: The Heine-Borel theorem is strongly computably reducible to

the identity problem. In other words, from an open cover fUngn2N of

[0; 1], we can compute k such that [0; 1] �
⋃k

n=1 Un.

Uniform Proof:

Enumerate the basic open sets as (a1; b1); (a2; b2); ::: where

ai ; bi 2 Q.

We code open sets U as the set of indices U = fi : (ai ; bi) � Ug

We code an open cover U = fUngn2N by U =
⊕

Ui .

Daniel Mourad (UCONN) Quantifying Reducibility April 22, 2022 26 / 45

Uniform proof (Cont)

Let

Us =

i < s : (ai ; bi) �

s⋃
j=1

Uj

 :

Let k be the least s

[0; 1] �
⋃
i2Us

(ai ; bi);

The existence of k is guaranteed because the Heine-Borel theorem is

true.

To algorithmically �nd k using oracle U = f(n; i) : (ai ; bi) � Ung,

compute the �nite sets Us and check if they cover the unit interval until

you �nd one that does.

Daniel Mourad (UCONN) Quantifying Reducibility April 22, 2022 27 / 45

Pigeonhole Principle

Theorem (In�nite Pigeonhole Principle [RT1
k])

For each k-coloring c : N! f0; 1; :::; k � 1g there is an in�nite X � N

such that c restricted to X is constant.

This is a special case of in�nite Ramsey's Theorem, hence the

notation RT1
k .

Note that we are splitting up the problem for di�erent values of k .

Daniel Mourad (UCONN) Quantifying Reducibility April 22, 2022 28 / 45

Theorem

RT1
2 �sc id: The in�nite pigeonhole principal is computable.

Proof:

Let c : N! f0; 1g be a 2-coloring of the natural numbers.

Then, the characteristic functions of X = fx : c(x) = 0g and

Y = fx : c(x) = 1g are both computable when using c as an oracle.

Because RT1
2 is true, we have that either X is a solution of c or Y is

a solution of c .

Since both X and Y are computable from c , c has a c-computable

solution.

This proof is non uniform. However, there is no uniform version.

Daniel Mourad (UCONN) Quantifying Reducibility April 22, 2022 29 / 45

Theorem

There is no Turing Functional � such that, for each c : N! f0; 1g,

�c(x) is total and the characteristic function of an in�nite X � N on

which c is constant

Suppose there were such a �. Enumerate the primitive recursive

functions by f1; f2; : : : . The existence of � implies that we can compute

�x:(fe(x) = 0) for each e, which is impossible. To see this,

De�ne total computable ce by

ce(x) =

{
0 if there exists y � x such that fe(x) = 0

1 otherwise
:

Emulate �ce (x) by performing all the same steps, except that when

�ce asks whether ce(x) = i , compute ce(x) to �nd the result. Call

this algorithm '(e; x).

To determine if �x:(fe(x) = 0) halts, �nd x such that '(e; x) = 0,

then compute ce(x).
Daniel Mourad (UCONN) Quantifying Reducibility April 22, 2022 30 / 45

Weihrauch Reducibility

We formalize this notion of uniformly computable reducible.

De�nition

Q is Weihrauch reducible to P if there exist oracle-algorithms � and 	

such that for each instance X of Q, �X is an instance of P such that for

any solution Ŷ of �X , 	Ŷ�X is a solution o� Q. We write Q �W P .

X̂ 2 Instances of P Solutions of X̂ for P

X 2 Instances of Q Solutions of X for Q

	�

We write Q �sW P if such a � and 	 exist where 	 is not allowed to

use X.

Daniel Mourad (UCONN) Quantifying Reducibility April 22, 2022 31 / 45

Examples

Theorem

RT1
2 6�W id.

Theorem

HB �sW id.

Theorem

RT1
k �sW RT1

k 0 for k � k 0. The reverse direction does not hold.

Theorem (Simpson, 2009)

CRhPI �sW WKL

Daniel Mourad (UCONN) Quantifying Reducibility April 22, 2022 32 / 45

Proof of CRhPI �sW WKL

De�nition

I is a prime ideal of ring (R;+; �) if

(I;+) is a proper subgroup of (R;+)

For each r 2 R; x 2 I, r � x 2 I

For all r; q 2 R, if r � q 2 I then either r 2 I or q 2 I.

De�nition

f : N! f0; 1g is a path through binary tree T � f�nite binary stringsg if

f jn 2 T for each n 2 N.

Strategy: suppose we are given functions +R : N2 ! N and �R : N2 ! N

that de�ne a commutative ring on R = N with additive identity 0 and

multiplicative identity 1. We have �+R��R construct a tree T of �nite

binary strings such that f is a path through T if and only if f is the

characteristic function of a prime ideal of R.

Daniel Mourad (UCONN) Quantifying Reducibility April 22, 2022 33 / 45

Proof of CRhPI �sW WKL (cont.)

Let � 2 T if and only if j�j � 2 or, for all i ; j; k < j�j,

�(0) = 1

�(1) = 0

If �(i) = �(j) = 1 and i +R j = k then �(k) = 1

If �(i) = 1 and i �R j = k then �(k) = 1

If �(i) = �(j) = 0 and i �R j = ak then �(k) = 0.

T is a tree because these conditions are preserved by initial segment. T

is in�nite because R has a prime ideal. Thus, WKL gives us a path that

is also an ideal (Ŷ = Ŷ).

Daniel Mourad (UCONN) Quantifying Reducibility April 22, 2022 34 / 45

Operations on Problems

Daniel Mourad (UCONN) Quantifying Reducibility April 22, 2022 35 / 45

What if we want to allow multiple uses of a problem?

Theorem (Informal)

RT1
4 is reducible to two uses of RT1

2.

Proof: Given c : N! f0; 1; 2; 3g, de�ne c1 : N! f0; 1g by

c1(x) =

{
0 if c(x) = 0 or c(x) = 1

1 if c(x) = 2 or c(x) = 3
:

Apply RT1
2 again to get an in�nite X such that c1 is constant on X.

Then, c is two-valued on X, either taking values in f0; 1g or f2; 3g. Let

g be an increasing bijection from N to X. Let

c2(x) = c(g(x)) mod 2:

Apply RT1
2 to c2 to get Y such that c is constant on Y . Then, g(Y) is

computable from X and c is constant on g(Y).

Daniel Mourad (UCONN) Quantifying Reducibility April 22, 2022 36 / 45

Compositional Product

The previous theorem was a proof that RT1
4 �sW RT1

2 ?RT
1
2, where ?

denotes the compositional product. Below, we give a precise de�nition of

?.

De�nition

Suppose all solutions to every instance of P are also instances of Q.

Then, we can de�ne P �Q, whose instances are instances of P .

(P �Q)-Solutions of X are all Q-solutions of any P -solution of X.

De�nition (Brattka, Gherardi, and Marcone, 2012)

R �W P ? Q if and only if there are P 0 �W P and Q0 �W Q such that

R �W P 0 �Q0.

Note that P ? Q is not a problem, but a degree.

Daniel Mourad (UCONN) Quantifying Reducibility April 22, 2022 37 / 45

Write X � Y as hX; Y i.

We showed that RT1
4 �sW P �Q for P;Q �sW RT1

2 de�ned by

Instances of P are pairs hc; c1i such that c : N! f0; 1; 2; 3g and

c1 : N! f0; 1g.

P -solutions of hc; c1i are hc2; Xi such that c2(x) = c(x) mod 2

and c1 is constant on X.

Instances of Q are hc2; Xi such that c2 : N! f0; 1g and X is any

subset of N.

Q-solutions of c2 �X are hY;Xi such that c2 is constant on Y .

hc; c1i hc2; Xi hY;Xi

c g(Y)

P Q

	Y�X
�c

Daniel Mourad (UCONN) Quantifying Reducibility April 22, 2022 38 / 45

Outlook

Daniel Mourad (UCONN) Quantifying Reducibility April 22, 2022 39 / 45

Theorem (Brattka and Pauly, 2018)

P ? Q is a well de�ned �W -degree. In other words, for each P and Q,

there exists a problem R such that for each S and T , S �W R �W T if

and only if S �W P ? Q �W T .

There are many connections between reverse math and this account of

reducibility. In the following example, let P ?n be the the ?-product of n

copies of P .

Theorem (Dzhafarov, Hirschfeldt, and Reitzes, 2020)

Let � consist of RCA0 together with all �1
1 formulas true over N and

suppose that P has computable instances. If Q 6�W P ?n for all n, then

� 6` P ! Q

Daniel Mourad (UCONN) Quantifying Reducibility April 22, 2022 40 / 45

Further Reading

Vasco Brattka, Guido Gherardi, and Arno Pauly (2021).

\Weihrauch Complexity in Computable Analysis". In: Handbook of

Computability and Complexity in Analysis. Ed. by Vasco Brattka

and Peter Hertling. Cham: Springer International Publishing,

pp. 367{417. ISBN: 978-3-030-59234-9. DOI:

10.1007/978-3-030-59234-9_11. URL:

https://doi.org/10.1007/978-3-030-59234-9%7B%5C_%7D11

Damir D Dzhafarov, Jun Le Goh, Denis R Hirschfeldt,

Ludovic Patey, and Arno Pauly (2020). \Ramsey's theorem and

products in the Weihrauch degrees". In: Computability 9,

pp. 85{110. ISSN: 2211-3576. DOI: 10.3233/COM-180203

Daniel Mourad (UCONN) Quantifying Reducibility April 22, 2022 41 / 45

https://doi.org/10.1007/978-3-030-59234-9_11
https://doi.org/10.1007/978-3-030-59234-9%7B%5C_%7D11
https://doi.org/10.3233/COM-180203

Thank you!

Daniel Mourad (UCONN) Quantifying Reducibility April 22, 2022 42 / 45

References I

Brattka, Vasco, Guido Gherardi, and Alberto Marcone (Jan. 2012).

\The Bolzano-Weierstrass Theorem is the Jump of Weak Kn"onig's

Lemma". In: Annals of Pure and Applied Logic 163.6. DOI:

10.1016/j.apal.2011.10.006. arXiv: 1101.0792. URL:

http://arxiv.org/abs/1101.0792%20http:

//dx.doi.org/10.1016/j.apal.2011.10.006.

Brattka, Vasco, Guido Gherardi, and Arno Pauly (2021). \Weihrauch

Complexity in Computable Analysis". In: Handbook of Computability

and Complexity in Analysis. Ed. by Vasco Brattka and Peter Hertling.

Cham: Springer International Publishing, pp. 367{417. ISBN:

978-3-030-59234-9. DOI: 10.1007/978-3-030-59234-9_11. URL:

https://doi.org/10.1007/978-3-030-59234-9%7B%5C_%7D11.

Brattka, Vasco and Arno Pauly (2018). \On the algebraic structure

of Weihrauch degrees". In: Logical Methods in Computer Science

14.4. ISSN: 18605974. DOI: 10.23638/LMCS-14(4:4)2018.

Daniel Mourad (UCONN) Quantifying Reducibility April 22, 2022 43 / 45

https://doi.org/10.1016/j.apal.2011.10.006
https://arxiv.org/abs/1101.0792
http://arxiv.org/abs/1101.0792%20http://dx.doi.org/10.1016/j.apal.2011.10.006
http://arxiv.org/abs/1101.0792%20http://dx.doi.org/10.1016/j.apal.2011.10.006
https://doi.org/10.1007/978-3-030-59234-9_11
https://doi.org/10.1007/978-3-030-59234-9%7B%5C_%7D11
https://doi.org/10.23638/LMCS-14(4:4)2018

References II

Dzhafarov, Damir, Denis Hirschfeldt, and Sarah Reitzes (2020).

\Reduction Games, Provability, and Compactness". In: To Appear.

Dzhafarov, Damir D, Jun Le Goh, Denis R Hirschfeldt,

Ludovic Patey, and Arno Pauly (2020). \Ramsey's theorem and

products in the Weihrauch degrees". In: Computability 9,

pp. 85{110. ISSN: 2211-3576. DOI: 10.3233/COM-180203.

Simpson, Stephen G (2009). Subsystems of Second Order

Arithmetic. 2nd ed. Cambridge: Cambridge University Press. ISBN:

9780521884396. DOI: DOI:10.1017/CBO9780511581007. URL:

https://www.cambridge.org/core/books/subsystems-of-

second-order-

arithmetic/EA16CB4305831530B7015D6BC46B7424.

Daniel Mourad (UCONN) Quantifying Reducibility April 22, 2022 44 / 45

https://doi.org/10.3233/COM-180203
https://doi.org/DOI: 10.1017/CBO9780511581007
https://www.cambridge.org/core/books/subsystems-of-second-order-arithmetic/EA16CB4305831530B7015D6BC46B7424
https://www.cambridge.org/core/books/subsystems-of-second-order-arithmetic/EA16CB4305831530B7015D6BC46B7424
https://www.cambridge.org/core/books/subsystems-of-second-order-arithmetic/EA16CB4305831530B7015D6BC46B7424

Primitive Recursion

Primitive recursion: A for-loop for f whose initial value is g and whose

iterative step is h. f (p()q) = f (p(x)q) = f (p(x; y)q) = 0 for all x and y ,

and

f (p(k; 0; x1; :::; xk)q) = g(p(x1; :::; xk)q)

and

f (p(k; S(y); x1; :::; xk)q) = h(p(y ; f (p(k; y ; x1; :::; xk)q); x1; :::; xk)q)

Daniel Mourad (UCONN) Quantifying Reducibility April 22, 2022 45 / 45

	Introduction
	Computability
	Computable Reducibility and Weihrauch Reducibility
	Operations on Problems
	Outlook
	References

