Computing Non-Repetitive Sequences Using the Lovász Local Lemma

Daniel Mourad

University of Connecticut
Daniel.Mourad@Uconn.edu

North Eastern Recursion and Defineability Seminar April 24th, 2022

Introduction

Background

- The Lovász local lemma (LLL) is an existence theorem with many uses within the probabilistic method (Erdős and Lovász, 1975).
- There is a probabilistic algorithm for finding witnesses to the LLL (Moser and Tardos, 2010).
- This algorithm can be simulated to compute infinite witnesses (Rumyantsev and Shen, 2014).
- This effective version has been applied in complexity theory (Csima, Dzhafarov, Hirschfeldt, Jockusch, Solomon, and Westrick, 2019; Liu, Monin, and Patey, 2018).
- The LLL can by extended in myriad ways. We effectivise a version of the LLL inspired by the Lefthanded LLL (Pegden, 2011).

Non-Repetitive Sequences

Classical Existence of Non-Repetitive Sequences

The following theorem of classical combinatorics, says "there exists of a sequence such that repetitions of long blocks are far apart."

Theorem (Beck, 1981)

For each $\varepsilon>0$ there is an N_{ε} and an infinite $\{0,1\}$-valued sequence such that any two identical blocks $[k, k+n)$ and $\left[\ell, \ell+n\right.$) of length $n>N_{\varepsilon}$ have distance $\ell-k$ greater than $(2-\varepsilon)^{n}$.

Example

In the string

$$
a_{0} a_{1} a_{2} \ldots a_{11}=011010010001
$$

the only pair of identical blocks of size 4 are $[3,7)$ and $[6,10)$.

Question: Can we compute such a sequence?

Classical Existence of Non-Repetitive Sequences

Theorem (Beck, 1981)

For each $\varepsilon>0$ there is an N_{ε} and an infinite $\{0,1\}$-valued sequence such that any two identical intervals of length $n>N_{\varepsilon}$ have distance greater than $(2-\varepsilon)^{n}$.

- Question: How to compute such a sequence?
- Existence is given by the infinite LLL.
- Natural choice: use effective version of the LLL given by Rumyantsev and Shen (2014).

Effective Local Lemma Setup

- Let $\mathcal{X}=\left\{x_{1}, x_{2}, \ldots\right\}$ be a set of computable random variables with finite ranges and uniformly computable probability distributions.
- Let $\mathcal{A}=\left\{A_{1}, A_{2}, \ldots\right\}$ be a set of events such that
- Each $A \in \mathcal{A}$ is determined by a finite set of variables $\operatorname{vbl}(A) \subset \mathcal{X}$.
- The code numbers for $\operatorname{vbl}\left(A_{i}\right)$ are uniformly computable with respect to i.
- For each $A \in \mathcal{A}$, the set of neighbors $\Gamma(A)=\{B \in \mathcal{A}: \operatorname{vbl}(A) \cap \operatorname{vbl}(B) \neq \emptyset\}$ is finite.
- For each $x_{i},\left\{A_{j}: x_{i} \in \operatorname{vbl}\left(A_{j}\right)\right\}$ is finite and has code number uniformly computable with respect to i.

Computable Local Lemma

Recall that $\Gamma(A)=\{B \in \mathcal{A}: \operatorname{vbl}(A) \cap \operatorname{vbl}(B) \neq \emptyset\}$
Theorem (Rumyantsev and Shen, 2014)
Suppose there exists a rational constant $\alpha \in(0,1)$ and a computable real-valued function $z: \mathcal{A} \rightarrow(0,1)$ such that, for each $A \in \mathcal{A}$,

$$
\operatorname{Pr}(A) \leq \alpha z(A) \prod_{B \in \Gamma(A)}(1-z(B)) .
$$

Then there exists a computable assignment of the variables in \mathcal{X} that makes all events $A \in \mathcal{A}$ false.

Setup for Building a Non-Repetitive Sequence

Theorem (Beck, 1981)

For each $\varepsilon>0$ there is an N_{ε} and an infinite $\{0,1\}$-valued sequence such that any two identical intervals of length $n>N_{\varepsilon}$ have distance greater than $(2-\varepsilon)^{n}$.

- Let x_{i} be the value the i^{\prime} th bit in the sequence.
- Let $A_{k, \ell, n}$ be the event that blocks $[k, k+n)$ and $[\ell, \ell+n)$ are identical (assume $k<\ell$).
- Let $\mathcal{A}=\left\{A_{k, \ell, n}: \ell-k<(2-\varepsilon)^{n}\right\}$.
- $\operatorname{vbl}\left(A_{k, \ell, n}\right)=[k, k+n) \cup[\ell, \ell+n) . \operatorname{Pr}\left(A_{k, \ell, n}\right)=2^{-n}$.
- $\Gamma\left(A_{k_{0}, \ell_{0}, n_{0}}\right)=\left\{A_{k, \ell, n} \in \mathcal{A}: \operatorname{vbl}\left(A_{k, l, n}\right) \cap \operatorname{vbl}\left(A_{k_{0}, \ell_{0}, n_{0}}\right) \neq \emptyset\right\}$

Unsatisfied Conditions

We run into a the following issues with this setup.

- Each x_{i} appears in $\operatorname{vbl}\left(A_{k, \ell, n}\right)$ for infinitely many $A_{k, \ell, n} \in \mathcal{A}$.
- Each $A_{k_{0}, \ell_{0}, n_{0}} \in \mathcal{A}$ has infinitely many neighbors $A_{k, \ell, n}$.

There are two sources:
(1) Fix k, ℓ. Increase n.

- Can be fixed by modifying \mathcal{A} to be $\left\{A_{k, \ell, n}: n\right.$ is least such that $\left.\ell-k<(2-\varepsilon)^{n}\right\}$
(2) Fix k. Increase ℓ and n.

The latter is not as readily fixed. To resolve them, we modify the Moser-Tardos algorithm.

The Resample Algorithm

Moser-Tardos Algorithm

The Moser-Tardos algorithm, also known as the resample algorithm, looks for a valuation of the variables in $\mathcal{X}=\left\{x_{1}, x_{2}, \ldots\right\}$ that makes each event in $\mathcal{A}=\left\{A_{1}, A_{2}, \ldots\right\}$ false.

Algorithm

Start with a random sample of the variables in \mathcal{X} and proceed in stages.

- At each stage, resample each $x \in \operatorname{vbl}(A)$ for some true event A.
- If all $A \in \mathcal{A}$ are false at any stage, then the algorithm stops doing anything.
- Prioritize events A_{i} with lower indices.

Example Stage

Example

Suppose $\left\{x_{0}, \ldots, x_{11}\right\}$ are independent fair coin flips and that $A_{k, \ell, n} \in \mathcal{A}$ for $(k, \ell, n)=(3,6,4)$ and $(k, \ell, n)=(0,5,4)$. If the current valuation is

$$
x_{0}, x_{1}, \ldots, x_{11}=011010010001,
$$

then $A_{3,6,4}$ is true. So, the resample algorithm takes new random samples for each $x_{i} \in \operatorname{vbl}\left(A_{3,6,4}\right)=[3,7) \cup[6,10)=[3,10)$. Suppose the resulting valuation is

$$
x_{0}, x_{1}, \ldots, x_{11}=011010110101 .
$$

This valuation makes $A_{0,5,4}$ true.
Resampling $A_{3,6,4}$ caused $A_{0,5,4}$ to go from false (good) to true (bad).

Ingredients of Computable LLL

Theorem (Constructive Lovász Local Lemma (Moser and Tardos, 2010))

Suppose the set of events \mathcal{A} depending on variables \mathcal{X} satisfy the conditions of the local lemma. Let τ_{n} be the first stage of the resample algorithm at which each of $A_{1}, A_{2}, \ldots, A_{n}$ is false. Then, $\mathbb{E}\left(\tau_{n}\right)<\infty$ for each n.

Lemma (Rumyantsev and Shen, 2014)

Suppose the set of events \mathcal{A} depending on variables $\{X\}$ satisfy the setup and conditions for the computable local lemma. Then, there is a computable function $f: \mathbb{N}^{2} \rightarrow \mathbb{N}$ such that

$$
\operatorname{Pr}\left(x_{i} \text { is resampled after stage } s\right) \leq f(i, s)
$$

and $\lim _{s \rightarrow \infty} f(i, s)=0$ for every i.

A Computable Witness

Lemma (Rumyantsev and Shen, 2014)

Suppose the hypotheses and conclusions of the previous lemma hold.
Then,
(1) With probability 1, the resample algorithm converges to a witness to the infinite LLL on \mathcal{A} and \mathcal{X}.
(2) At least one of these witnesses is computable.

To compute initial segment $x_{1}, \ldots x_{n}$ of a witness:

- Simulate the resample algorithm for every possible resampling.
- Do this for enough steps s to approximate the probability distribution on the final values of x_{1}, \ldots, x_{n}.
- Pick a valuation of x_{1}, \ldots, x_{n} that has approximate probability greater than $\sum_{i=1}^{n} f(i, s)$.

Analysis of the Moser-Tardos Algorithm

To understand why the resample algorithm converges, we track the causality behind each resampling.

Tracking "Blame" in the Resample Algorithm

Suppose $\Gamma\left(A_{i}\right)=\left\{A_{i-1}, A_{i}, A_{i+1}\right\}$ and the first few events resampled by the Moser-Tardos algorithm begin with

$$
A_{1}, A_{2}, A_{5}, A_{4}, A_{3}, A_{6}, A_{5}, A_{5}, A_{4}, A_{6} .
$$

Reversing this initial segment yields

$$
A_{6}, A_{4}, A_{5}, A_{5}, A_{6}, A_{3}, A_{4}, A_{5}, A_{2}, A_{1} .
$$

Then, we can track "blame" for A_{6} being true at the last step via the string
$A_{6}, A_{4}, A_{5}, A_{5}, A_{6}, A_{x}, A_{4}, A_{5}, A_{k}, A_{k}=A_{6}, A_{5}, A_{5}, A_{6}, A_{4}, A_{5}$.
We track "blame" for A_{5} being true at the third step with the following sequence of length 1

$$
A_{5}, A_{x}, A_{x}=A_{5} .
$$

Key Features of Moser-Tardos Algorithm

Let $A_{i_{1}}, A_{i_{2}}, A_{i_{3}}, \ldots$ be the log of events resampled by the a run of the Moser-Tardos algorithm.

- For each $A_{i_{j}}$ in the log, we can track the "blame" of why $A_{i_{j}}$ is true via a Moser-Tree
- The probability of large Moser trees appearing approaches zero
- The α in the statement of the computable local lemma gives us a computable bound on the rate.
- If $x_{i} \in \operatorname{vbl}(A)$ for finitely many A then
$\operatorname{Pr}\left(x_{i}\right.$ is resampled after stage $\left.s\right)$ therefore also approaches zero in a uniformly computable way.

What if $x_{i} \in \operatorname{vbl}(A)$ for infinitely many A ?

What if $x_{i} \in \operatorname{vbl}(A)$ for Infinitely Many A?

If $x_{i} \in \operatorname{vbl}(A)$ for infinitely many A, then

- Large Moser trees are still just as rare,
- but small Moser trees can still cause x_{i} to be resampled at late stages s.

Example

Suppose \mathcal{A} and \mathcal{X} satisfy all conditions of the computable local lemma except that

$$
\left[x_{1} \in \operatorname{vbl}\left(A_{j}\right)\right] \Leftrightarrow\left[j=2^{n}\right] .
$$

If the singleton Moser tree

$$
A_{2 k}
$$

can occur for any k, then x_{1} can be resampled arbitrarily late despite not being part of a long Moser tree.

Modifying the Resample Algorithm

Restricting the Resample Set

As in the previous slide, suppose that

$$
\left[x_{1} \in \operatorname{vbl}\left(A_{j}\right)\right] \Leftrightarrow\left[j=2^{n}\right]
$$

but also that

$$
\operatorname{Pr}\left(A_{j} \mid x_{1}=0\right)=\operatorname{Pr}\left(A_{j} \mid x_{0}=1\right)=\operatorname{Pr}\left(A_{j}\right)
$$

Idea

We should able to get all of the previous results for a modified resample algorithm in which we only resample $\operatorname{vbl}\left(A_{2^{n}}\right) \backslash\left\{x_{1}\right\}$ when $A_{2^{n}}$ is the least true event in \mathcal{A}.

Restricting the Resample Set

Idea

In general, for each $A \in \mathcal{A}$, specify a subset $\operatorname{rsp}(A) \subset \operatorname{vbl}(A)$ of variables to resample. Then, we should redefine the neighborhood relation Γ by

$$
\Gamma(A)=\{B \in \mathcal{A}: \operatorname{rsp}(A) \cap \operatorname{rsp}(B) \neq \emptyset\}
$$

for our analysis of this modified resample algorithm.

- Let $\operatorname{stc}(A)=\operatorname{vbl}(A) \backslash \operatorname{rsp}(A)$.
- We also require that $\max (\operatorname{stc}(A))<\min (\operatorname{rsp}(A))$.

Priority of Events for Resampling

- Not resampling the full set $\operatorname{vbl}(A)$ of variables that determine A obfuscates the "blame tracking" feature of the Moser-sequences
- To recover this, we resample events in a specific order

Idea

Fix a linear order \prec on \mathcal{A} such that

$$
[\max (\operatorname{rsp}(A))<\max (\operatorname{rsp}(B))] \Rightarrow[A \prec B] .
$$

Where max is calculated based on the indices of the variables in \mathcal{X}.

The modified resample algorithm chooses the \prec-least true event to resample at each stage.

Constraints on rsp(A)

- Let $A \ll B$ if and only if $A \prec B$ and $A \notin \Gamma(B)$ (i.e. $\operatorname{rsp}(A)$ and $\operatorname{rsp}(B)$ are disjoint).
- To ensure that \ll is transitive, we also impose that $\operatorname{rsp}(A)$ be an interval $[\min (\operatorname{rsp}(A)), \max (\operatorname{rsp}(A))]$.
- We also require analogous conditions on $\operatorname{rsp}(A)$ as we did for $\operatorname{vbl}(A)$ in the effectivisation of the original LLL.

Computable "Lefthanded" LLL

Under all of the conditions previously described,

Theorem (M.)

Suppose there is $P^{*}(\mathcal{A}) \rightarrow[0,1]$ such that for each $A \in \mathcal{A}$ and each valuation μ of the variables in $\operatorname{stc}(A)$,

$$
P^{*}(A) \geq \operatorname{Pr}(A \mid x=\mu(x) \text { for all } x \in \operatorname{stc}(A))
$$

Furthermore, suppose there is computable $z: \mathcal{A} \rightarrow(0,1)$ and $\alpha \in(0,1)$ such that, for each $A \in \mathcal{A}$,

$$
P^{*}(A) \leq \alpha z(A) \prod_{B \in \Gamma(A)}(1-z(B)) .
$$

Then, there is a computable valuation of \mathcal{X} under which each $A \in \mathcal{A}$ is false.

Computable Non-Repetitive Sequences

Thus, we can compute a sequence whose long identical intervals are far apart:

Corollary

For each $\varepsilon>0$ there is an N_{ε} and a computable $\{0,1\}$-valued sequence such that any two identical intervals of length $n>N_{\varepsilon}$ have distance greater than $(2-\varepsilon)^{n}$.

We can also compute a sequence whose adjacent intervals are very different.

Corollary

For each $\varepsilon>0$, there is an N_{ε} and a computable $\{0,1\}$-valued sequence such that any two adjacent intervals of length $n>N_{\varepsilon}$ have share at most $\left(\frac{1}{2}-\varepsilon\right) n$ many entries.

Game versions of these applications appear in (Pegden, 2011).

Outlook

Further Questions

- Can we compute winning strategies to the games studied by Pegden (2011)?
- Almost: we can compute a winning sequence of moves from an opposing strategy
- Can we make conditions for the computable version of the "Lefthanded" LLL closer to the conditions of the original?
- Is the computable "Lefthanded" LLL useful in complexity theory?

Thank you!

References I

Beck, J. (1981). "An application of Lovász Local Lemma: there exists an infinite 01-sequence containing no near identical intervals". In: Finite and Infinite Sets 37.
Csima, Barbara F, Damir D Dzhafarov, Denis R Hirschfeldt, Carl G Jockusch, Reed Solomon, and Linda B Westrick (2019). "The reverse mathematics of Hindman's Theorem for sums of exactly two elements". In: Computability 8.3-4, pp. 253-263. ISSN: 22113576. DOI: 10.3233/COM-180094.
Erdős, P. and L. Lovász (1975). "Problems and results on 3-chromatic hypergraphs and some related questions". In: Infinite and finite sets 2.2, pp. 609-627.

Liu, Lu, Benoit Monin, and Ludovic Patey (2018). "A computable analysis of variable words theorems". In: Proceedings of the American Mathematical Society 147.2, pp. 823-834. ISSN: 0002-9939. DOI: 10.1090/proc/14269.

References II

Moser, Robin A. and Gábor Tardos (2010). "A constructive proof of the general lovász local lemma". In: Journal of the ACM 57.2, pp. 1-12. ISSN: 00045411. DOI: 10.1145/1667053.1667060, arXiv: 0903.0544.

Pegden, Wesley (2011). "Highly nonrepetitive sequences: Winning strategies from the local lemma". In: Random Structures \& Algorithms 38.1-2, pp. 140-161. DOI: https://doi.org/10.1002/rsa. 20354. arXiv: 1010.5772 v 1 . URL: https: //onlinelibrary.wiley.com/doi/abs/10.1002/rsa. 20354.
Rumyantsev, Andrei and Alexander Shen (May 2014). "Probabilistic constructions of computable objects and a computable version of Lovász local lemma". In: Fundamenta Informaticae 132.1, pp. 1-14. ISSN: 01692968. DOI: 10.3233/FI-2014-1029. arXiv: 1305.1535. URL: http://arxiv.org/abs/1305.1535.

